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ELLIS Alicante is the first Spanish unit within the ELLIS European network for
research excellence. It is the only ELLIS unit that has been created as an independent
non-profit research foundation, with the spirit of a scientific startup.
Our name, The Institute of Human-Centered AI, defines our mission: We firmly believe

in the power of AI as an engine for progress and a key contributor to well-being. However,
such a potential is by no means guaranteed and that’s why the research of our foundation is
so important. Our vision, mission and research have been awarded the 2022 Spanish Social
Innovation Award by the Spanish Association of Foundations.
We aim to be a leading research lab on ethical, responsible and human-centered AI.

We are the only ELLIS unit devoted exclusively to this topic.
At ELLIS Alicante, we address three important research areas:

• AI to understand us, by modeling human behavior using AI techniques both at
the individual and aggregate levels. We focus on developing machine learning-based
models of individual and aggregate human behavior. The practical applications are
diverse, including the development of algorithms that generate recommendations for
users or accurate and fair credit models to promote financial inclusion. At an aggregate
level, we aim to model and predict human behavior on a large scale, at a country or
region level, which allows addressing global challenges such as pandemics, detecting
possible economic crises or responding to natural disasters. Our work during the
COVID-19 pandemic is a good example of our work in this area.

• AI that interacts with us, via the development of intelligent, interactive systems,
with a special focus on the development of smart phones, personal assistants and
chatbots.

• AI that we trust, by tackling the ethical challenges posed by today’s AI systems,
such as algorithmic discrimination, violation of privacy, opacity, lack of veracity or
subliminal manipulation of human behavior. Current AI algorithms are not perfect
and have limitations that are important to identify and address in order to minimize
the possible negative consequences of their use. In this area, we also investigate the
societal and cultural impact of AI.
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Abstract (EN)

Federated Learning (FL) enables decentralized training of machine learning models on dis-
tributed data while preserving privacy by design. An FL design consists of clients training
models on private data and a central server aggregating a global model based on the con-
sensus among clients. In an ideal scenario, the training data and computing resources are
identically and independently distributed (i.i.d.) among clients, therefore, clients can work
together in agreement to reach a global optima.
However, in realistic FL settings, heterogeneity arises between clients in terms of both data

and resource availability. This research focuses on such scenarios, with a special interest on
how the server can adapt the aggregation method from a simple averaging to address the
clients’ diversity.
The first research direction discusses existing client selection methods and proposes a novel

taxonomy of FL methods where the participation of the clients is actively managed by the
server to achieve a global objective with respect to the client heterogeneity. This research
direction is presented in [NLQO22],
The next chapter focuses on model heterogeneity as an inclusion policy for low-resource

clients. It investigates the implications of client resource constraints on privacy given a re-
duced model complexity in low-resource clients. This work has been presented in [NLQO25].
The final area provides a solution to the data heterogeneity problem with distribution-

aware client selection. Applying this solution can mitigate spurious correlations and improve
algorithmic fairness in FL. This research line has been described in [NFN+25].
[NLQO22] Németh, G. D., Lozano, M. A., Quadrianto, N., and Oliver, N. (2022). A

Snapshot of the Frontiers of Client Selection in Federated Learning. Transactions on Machine
Learning Research.
[NLQO25] Németh, G. D., Lozano, M. A., Quadrianto, N., and Oliver, N. (2025). Privacy

and Accuracy Implications of Model Complexity and Integration in Heterogeneous Federated
Learning. IEEE Access, 13, 40258-40274.
[NFN+25] Németh, G. D., Fani, E., Ng, Y. J., Caputo, B., Lozano, M. A., Oliver, N., and

Quadrianto, N.(2025). FedDiverse: Tackling Data Heterogeneity in Federated Learning with
Diversity-Driven Client Selection.
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Resumen (ES)

El Aprendizaje Federado (FL) permite el entrenamiento descentralizado de modelos de apren-
dizaje automático sobre datos distribuidos preservando la privacidad por diseño. Un diseño
de FL consiste en que los clientes entrenen modelos sobre datos privados y un servidor central
agregue un modelo global basado en el consenso entre los clientes. En un escenario ideal, los
datos de entrenamiento y los recursos informáticos se distribuyen de forma idéntica e inde-
pendiente (iid) entre los clientes, por lo que éstos pueden trabajar juntos de común acuerdo
para alcanzar un óptimo global.
Sin embargo, en escenarios realistas de FL, existe heterogeneidad entre los clientes tanto en

términos de datos como de disponibilidad de recursos. La investigación presentada en esta
tesis se centra en dichos escenarios, con especial interés en cómo el servidor puede adaptar el
método de agregación de un simple promedio para hacer frente a la diversidad de los clientes.
La primera línea de investigación presenta los métodos de selección de clientes existentes

y propone una nueva taxonomía de métodos de FL donde la participación de los clientes
es gestionada activamente por el servidor para lograr un objetivo global con respecto a la
heterogeneidad de los clientes. Esta investigación ha sido publicada en [NLQO22].
El siguiente capítulo se centra en la heterogeneidad del modelo como política de inclusión

de clientes con recursos computacionales limitados. Investiga las implicaciones de las restric-
ciones de recursos del cliente sobre la privacidad dada una complejidad reducida del modelo
en clientes de bajos recursos. Esta investigación ha sido publicada en [NLQO25].
El área final ofrece una solución al problema de la heterogeneidad de los datos con una

selección de clientes que tiene en cuenta la distribución de los datos. La aplicación de esta
solución puede mitigar las correlaciones espurias y mejorar la equidad algorítmica en FL.
Este trabajo ha sido publicado en [NFN+25].
[NLQO22] Németh, G. D., Lozano, M. A., Quadrianto, N., and Oliver, N. (2022). A

Snapshot of the Frontiers of Client Selection in Federated Learning. Transactions on Machine
Learning Research.
[NLQO25] Németh, G. D., Lozano, M. A., Quadrianto, N., and Oliver, N. (2025). Privacy

and Accuracy Implications of Model Complexity and Integration in Heterogeneous Federated
Learning. IEEE Access, 13, 40258-40274.
[NFN+25] Németh, G. D., Fani, E., Ng, Y. J., Caputo, B., Lozano, M. A., Oliver, N., and

Quadrianto, N.(2025). FedDiverse: Tackling Data Heterogeneity in Federated Learning with
Diversity-Driven Client Selection.
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Kivonat (HU)

A Federated Learning (FL) lehetővé teszi a gépi tanulási modellek decentralizált képzését el-
osztott adatokon, miközben rendszer tervezéséből adódóan őrzi az adatok védelmét. Egy FL
rendszer kialakításának lényege, hogy a kliensek (clients) modelleket tanítanak a saját privát
adataikon, és egy központi szerver (server) a kliensek által küldött modellek konszenzusán
alapuló globális modelt képez (aggregation). Ideális esetben a képzési adatok és a számítási
erőforrások azonos és egymástól független (indentically and independently distributed – iid)
elosztásban vannak a kliensek között, ezért a kliensek egyetértésben dolgozhatnak együtt a
globális optimum elérése érdekében.
Azonban egy reális FL együttműködés esetén sokszínűség (heterogeneity) áll fent az ügyfe-

lek között mind az adatok, mind az erőforrások rendelkezésre állása tekintetében. Ez a dok-
tori értekezés ilyen forgatókönyvekre összpontosít, különös tekintettel arra, hogy a szerver
hogyan tudja az aggregációs módszert az egyszerű átlagolásból az ügyfelek különbségeinek
kezelésére adaptálni.
Az első kutatási irány a meglévő kliens kiválasztási módszereket (client selection) tárgyal-

ja, és javaslatot tesz a FL módszerek új taxonómiájára, ahol a kliensek részvételét a szerver
aktívan kezeli, hogy az ügyfelek heterogenitását figyelembe véve globális célt érjen el. [NL-
QO22]
A következő fejezet a modellek sokszínűségére (model heterogeneity) összpontosít, mint ez-

köz az alacsony erőforrású kliensek a rendszerbe való integrálására. Megvizsgálja a kliens
erőforrás-korlátozásainak az adatvédelemre gyakorolt hatását, azaz, hogy vajon a csökken-
tett modell komplexitás az alacsony erőforrású kliensek esetében segít-e a privát adatainak
védelmében. [NLQO25]
Az utolsó fejezetek az adatok sokszínűségének (data heterogeneity) problémájára nyújt

megoldást azáltal, hogy a kliens kiválasztás során a szerver gondos mérlegelést végez, hogyan
állíthatná párba a különböző adatokkal bíró klienseket. E megoldás alkalmazása enyhítheti a
modell által tanult téves összefüggéseket (spurious correlations) és javíthatja az algoritmikus
igazságosságot (algorithmic fairness) az elosztott rendszerben. [NFN+25]
[NLQO22] Németh, G. D., Lozano, M. A., Quadrianto, N., and Oliver, N. (2022). A

Snapshot of the Frontiers of Client Selection in Federated Learning. Transactions on Machine
Learning Research.
[NLQO25] Németh, G. D., Lozano, M. A., Quadrianto, N., and Oliver, N. (2025). Privacy

and Accuracy Implications of Model Complexity and Integration in Heterogeneous Federated
Learning. IEEE Access, 13, 40258-40274.
[NFN+25] Németh, G. D., Fani, E., Ng, Y. J., Caputo, B., Lozano, M. A., Oliver, N., and

Quadrianto, N.(2025). FedDiverse: Tackling Data Heterogeneity in Federated Learning with
Diversity-Driven Client Selection.
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Chapter 1

Introduction

Federated learning (FL) is a machine learning approach that aims to address privacy and
security concerns existing in centralized machine learning. It consists of a distributed collab-
orative learning architecture, where a server communicates with many clients (e.g.mobile
devices) so that clients keep their potentially sensitive private data locally and only share
the processed model weights and metadata information with the server. The core task of the
server is to aggregate the model parameters that have been received from the clients to learn
an improved global model that is then shared back with the clients. The central server might
choose different termination conditions for the training process and perform model aggrega-
tion using different strategies and optimizers. This learning approach has been promoted
as achieving privacy-by-design and thus offering a promising solution in privacy-sensitive
applications, such as healthcare and banking.
Since its proposal in 2017 by McMahan et al. [MMR+17], the field of FL has grown very

rapidly. A comprehensive survey from 2021 describes advances and open problems in FL
and collects more than 500 related works [KMA+21]. It analyzes the types of federated
learning, describes the most crucial challenges, and summarizes the directions taken by the
researchers to address these problems. This thesis follows the same notation and definitions
as those presented in Kairouz et al. [KMA+21].

Types of FL In terms of the scope of a federated learning system, we consider two cate-
gories.

1. Horizontal vs. Vertical FL. First, depending on the nature of the data distribution, FL
systems are divided into vertical and horizontal federated learning. Vertical federated learning
consists of clients with access to different data about same individuals, who are related by
means of a unique identifier. The motivation for the collaboration in this setting is to
build more accurate models by including complementary information about the individuals
while preserving their privacy and avoiding sending data to the central server. In contrast,
horizontal federated learning refers to a federation where the features are the same in each
client. In this case, the motivation for the collaboration is to have access to more data points
thanks to the federation while keeping them privately on the clients’ side. The central server
learns a better performing model than the local models of any of the individual clients and
sends it back to the clients so that they benefit from the federation. In this thesis, we focus
on horizontal federated learning techniques.

2. Cross-silo vs Cross-device FL. Secondly, if we consider the nature of the clients, there

1
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are two distinguishable types of FL architectures: cross-silo and cross-device [KMA+21].
In cross-silo federated learning, clients are expected to be reliable, available, stateful, and
addressable. In contrast, in cross-device federated learning, the clients are separate and
diverse individual actors that may not participate in the federation for a variety of reasons,
such as a loss of connectivity or excessive energy consumption.

Challenges in FL The field of federated learning includes many important research topics
and is increasingly used for different privacy-sensitive applications [LLGL24]. In the follow-
ing, we summarize the most important challenges in federated learning and some commonly
used strategies to address them.

1. Efficiency, where the focus is to train more accurate models faster, with less and lighter
communication with the clients, as this is a major bottleneck in FL applications [KMY+16;
CSP+21; DLX+24; ZZL+24]. In this category, we also include the challenge of building FL
systems that are robust to heterogeneity in the data. This is often referred to as non-IID
data, which means that data samples are not independent and identically distributed (IID)
between clients [MRA+12]. A realistic example where any of these problems can be present
is a company training federated learning models on the users’ mobiles across the globe.
The client data can depend on the demographic preferences of the user, while the online
communication (on possibly metered network) and the geographic distances can motivate
the use of compressed and robust communication. Strategies to address this challenge can
include client selection [CWJ22; NLQO22], partially reduced model complexity for metered
clients [DDT21; NLQO25], and personalization [LHBS21].

2. Protection against malicious actors. Compared to centralized machine learning, where
the training is performed in a central system and the administrator can control who has access
to it, federated learning clients can potentially behave maliciously, and the online commu-
nication with the server can expose the overall FL system to additional third-party curious
listeners. We distinguish privacy attacks, where passive listeners want to extract sensitive
information from the observed communication [TLC+20; NLQO25], and adversarial attacks
where actors manipulate the FL training to achieve their objective, harming the original goal
of the training [BCMC19; YDK+24]. Defenses can include restrictions on communication,
such as secure multiparty computation [LZS+24] or differential privacy [TLC+20], robust
optimizers [YDK+24], and encouraging greater participation of trusted clients through in-
centive mechanisms [STW19].

3. Fairness, which includes fair performance, generalized from traditional algorithmic
fairness concepts applied to a distributed scenario, and fair collaboration, addressing hetero-
geneity in the contribution of clients and their motivation through rewards [SYL23; HYS+24;
SACA24]. Strategies to improve fairness can include personalization [LHBS21], constrained
optimization with fairness evaluation on the server side [KPDG22], and incentive mecha-
nisms [NLQO22].

4. System challenges, including problems that arise from unreliable communication, dis-
connecting devices, or devices with different computational capabilities [BEG+19]. Solutions
can include clustering clients with similar system capabilities [ZZWC20], reducing compu-
tational overhead for low resource clients [DDT21; NLQO25], and failure-robust aggrega-
tion [MÖB22].
Table 1 summarizes these challenges and strategies in federated learning. We highlight

in blue the challenges and strategies addressed in this thesis. Our aim is to relax the core
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Table 1. Challenges and common strategies in federated learning. In blue the challenges and
strategies addressed in this thesis.

Challenges in FL Strategies to address the problems
• Efficiency

– Communication
– Compression
– Data heterogeneity (chapter 5)

• Privacy
– Differential Privacy
– Curious attacks
∗ Membership inference (chapter 4)

• Adversarial attacks
– Model poisoning
– Data poisoning

• Fairness
– Fair performance
∗ Group fairness (chapter 6)

– Fair collaboration
• System challenges

– Low resource clients (chapter 4)
– Device availability
– Device failures

• Application-specific challenges

• Modified objectives
– Personalization
– Clustered FL

• Expanded server responsibilities
– Advanced optimizers
– Evaluation with server data
– Shared generators

• Client Participation (chapter 3)
– Client selection (chapters 5 and 6)
– Client weighting
– Incentive mechanisms

• Multi-agent games
– Multi-armed bandit
– Reinforcement learning

• Reduced communication & computation
– Homomorphic Encryption
– Secure Multi-Party Computation
– Differential Privacy
– Model heterogeneity (chapter 4)
– Knowledge distillation

assumptions of horizontal federated learning with respect to heterogeneity from three per-
spectives: we propose a taxonomy of client selection to allow for heterogeneity in client
participation; we design methods that leverage model heterogeneity to enhance privacy; and
we present a novel method to mitigate the negative effects of data heterogeneity in the
clients.

Structure of the thesis In chapter 3, we focus on client selection. Dealing with a large
number of clients was the original motivation to apply client selection in federated learning.
The first FL methods [MMR+17] used uniform random selection to limit the number of
clients the server has to communicate with in each round. Later works have shown that
client selection methods can keep the performance of the overall model while improving the
convergence rate of FL training [NY19], reducing the number of required training rounds
[GMB+19], or improving fairness in the case of unbalanced data [LSBS20]. We propose
a taxonomy of client selection that categorizes the methods based on characteristics such
as the aim of the method, the capabilities of the clients, and the required communication.
One such example is model heterogeneity, originally proposed to allow clients with lower
computational capabilities to participate in federated learning by selecting them to train
smaller neural networks [DDT21]. The core contributions of this chapter are presented in
[NLQO22].



4

Next, in chapter 4, we design a group of methods based on model heterogeneity to address
the question of privacy. FL consists of a distributed machine learning approach that enables
training models without the need to transfer the raw data from different devices or locations
(clients) to a central server. It is considered a privacy-preserving solution by design, as raw
data never leaves clients and only the model parameters are shared with the central server
, which is of great importance in many practical scenarios, such as healthcare [XGS+21;
LWC+22] and finance [LTJZ20; BP20], or intelligent smartphone interfaces [APA+22]. How-
ever, recent work has shown that sensitive information about original data can be inferred
by analyzing the model parameters that are shared in the communication rounds [FJR15;
CLE+19]. One reason for this is that complex models overfit the training data [YGFJ18].
Thus, we investigate whether model heterogeneity can help mitigate the loss of privacy of
participating clients by allowing clients with fewer data to train smaller models. This chapter
is based on the content of the following publication [NLQO25].
In chapter 5, we address the challenge of data heterogeneity in the clients. In real-world

FL scenarios, client data is often shaped by local factors such as different user behaviors
[TYCY22], context-specific data collection environments [FMO20; YAE+18], and socioeco-
nomic or cultural biases [BCM+18], resulting in statistical data heterogeneity, where data
between different clients is not IID and is unbalanced. Statistical data heterogeneity hampers
the generalization capabilities of the server’s model across clients, slowing convergence, and
reducing performance [LHY+20; CCC22]. In chapter 5, we address this issue by proposing
FedDiverse, a novel FL client selection method that takes advantage of the heterogeneity of
client data to reduce the spurious correlation learned by the federated model. The core con-
cept is that if many clients own similar data, selecting clients based on their differences can
reduce the unwanted correlation in the majority. This chapter is based on this publication
[NFN+25].
Finally, in chapter 6, we further investigate the capabilities of FedDiverse to achieve

group fairness in FL [SYL23]. Specifically, we adapt the client selection capabilities of
FedDiverse to improve group fairness in the clients derived from bias in the training data.
The rationale is to select diverse clients to increase the participation of clients with valuable
data from underrepresented groups.



Chapter 2

Background

In this chapter, we present the mathematical notation used in this thesis, particularly con-
cerning federated learning (we focus on horizontal federated learning in all chapters), client
selection, and membership inference attacks. For chapters derived from research articles, we
updated the equations to maintain consistent notation throughout the chapters [NLQO22;
NLQO25; NFN+25]. We follow FL practices as well as the notation used in the “Deep
Learning” book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville [GBC16]. Table 2
summarizes the notation used in the thesis.
Additionally, figure 1 illustrates the challenges and strategies addressed by the thesis.

Table 2. Summary of notation in this thesis

D, n := |D| dataset
(x, y) ∈ D data sample

x ∈ X , y ∈ Y input, output
X ,Y ,A input, output, attribute space
M(f,θ) model
f : X → Y predictor function

θ ∈ Ω model parameters
AN×M,l ∈ θ weight matrix at layer l

k ∈ K, K := |K| client in client set
S server

t = 1..T traning rounds
St ⊆ K selected clients for round t
θt
k model parameters for the k client in round t

Dk dataset of client k
Pr[·] probability
`,L loss, cost function
A 3rd party attacker

2.1 Federated learning
Federated learning is a cooperation of clients, where each client k ∈ K, |K| = K has access to
a dataset Dk that is considered to be private to the client. The clients work together under

5
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Figure 1. A summary of the research topics of this thesis: In a federated learning architecture,
the central server can use client selection to tackle data heterogeneity, to reduce unwanted
spurious correlations or to improve algorithmic fairness. Furthermore, the server allows the
clients to use model heterogeneity: clients can choose to learn models of reduced complexity to
improve their privacy against membership inference attacks.

a central server S to train a global model f : X −→ Y with model parameters θ ∈ Ω.
In vertical FL, the global input space is a combination of the client inputs:

⋃
k∈K Xk = X

with some id shared between clients Xid ⊆
⋂

k∈KXk. In horizontal FL, the clients share the
same input space Xk = X . In this work, we focus on horizontal FL.
In horizontal FL, where the clients share the same input-output space, we consider D =⋃K
i=1Di as the total dataset and |D| as the total number of data samples in all the clients,

(x, y) ∈ Dk as an input-output pair of training samples in the dataset of client k and ` is
the loss function. Then, the central server aims to minimize the global cost function L(θ)
given by equation (1).

min
θ∈Ω

L(θ) = 1

|D|
∑
k∈K

∑
(x,y)∈Dk

`(y, f(x,θ)) (1)

However, the central server does not have access to the clients’ private data. Thus, it
broadcasts the global model parameters θ to all clients, which are used by each client k ∈ K
as the starting point to compute the local parameters θk that minimize their local cost
function Lk(θk,Dk) described in equation (2).

min
θk∈Ω

Lk(θk,Dk) =
1

|Dk|
∑

(x,y)∈Dk

`(y, f(x,θk)) (2)

Once the server has collected the local parameters (θk), it aggregates them into the next
iteration of the global parameter θ to minimize the global cost function L(θ). Each iteration
of the global parameter update is called a training round and the parameters in the round
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ServerClients
K

Request vk for client k
Collect Mk

v′k = g(Mk)

Value generation St = h ({v1, ..., vK})︸ ︷︷ ︸
Value interpretation

vtk = v′k + γ(vt−1
k , ...)

St
Broadcast θt

Client update
θt+1
j

θt+1 = agg
(
{θt+1

j , j ∈ St}
)︸ ︷︷ ︸

Aggregation

C
lient

selection
Federated

update

R
ound
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m
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Figure 2. Diagram of a general federated learning training round with client selection. The server
communicates with the client set K to select the participating client set S. Only this subset of
clients trains on their local data in a given round t and reports their parameters back to the server.
Not all steps are required for every algorithm

t are denoted with θt. A naive aggregation function is to weight each client’s parameter
proportionate to their data sample size, given by equation (3). The federated training
proceeds until reaching convergence of the global cost function L.

θt+1 =
∑
k∈K

|Dk|
|D|

θt
k (3)

The communication with each client after each local model update may generate signifi-
cant overhead, particularly when the number of clients is large. To address this problem,
McMahan et al. [MMR+17] introduced the FedAvg algorithm where the clients communi-
cate with the server only after e local epochs. From the server’s point of view, the global
model parameters are updated with the clients’ data in training rounds t = 1, ..., T . From
the clients’ perspective, every training round t consists of τ = 1, ..., e local epochs. Thus,
the clients train a total number of eT epochs.

2.2 Client selection (participation heterogeneity)
In chapters 3 and 5, we discuss client selection, a FL technique where in round t instead of
communicating with every client in K, the server chooses a subset of clients (St),

St ⊆ K (4)

to perform the local training and update the global model based on their response.
FedAvg McMahan et al. [MMR+17] uses a random selection St of K ′ participating clients

in every training round t, St ⊆ K with |St| = K ′, such that a client k is selected with
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probability p(k ∈ St) = K′

K
. The client update and aggregation steps are given by θt+1

j =

ClientUpdate(θt,Dj) and θt+1 = agg({θt+1
j , j ∈ St}), respectively.

After the seminal work of FedAvg, subsequent research works have proposed a diversity
of client selection methods, most of which follow the flow illustrated in figure 2. First,
the server requests a value vk from each client, which the client computes based on its local
informationMk. Once the server has received the vk from all the clients, it selects a subset St

of the clients according to function h(v1, ..., vK). Stateful selection methods also use previous
information about the clients, calculating vk from the client feedback v′k and a function (γ) of
previous values of the client. After this, the server broadcasts its global parameters θt only
to the selected clients St, which update their local models and send back their updated local
parameters θt+1

k . With this information, the server computes the updated global parameter
θt+1.

2.3 Model heterogeneity
The previously described method follows the standard horizontal FL approach: the clients
and the server share the model architecture while they keep private data locally. In chapter 4,
we investigate a more generalized case, model heterogeneity, where some clients have a model
with reduced complexity but a similar model architecture. On an abstract level, we illustrate
this with

fk = f and θk ⊂ θ, (5)
signaling that the model architecture of the client k shares the same structure as the global
model, while its parameters are a subset of the server’s.
We assume a heterogeneous FL architecture in a computer vision task, where both the

server and clients’ models are Convolutional Neural Networks (CNNs) with a different num-
ber of channels in each layer, but the same number of layers.
Let θ denote the model parameters of the server’s CNN, composed of L layers represented

by a weight matrix AN×M,l ∈ θ at each layer l. In such a setting, model reduction θk ⊂ θ
in client k is achieved by limiting the size of each layer l in the client’s CNN according to
the following principle: a layer in the server represented by weight matrix AN×M,l ∈ θ is
reduced to size Nk ×Mk, where Nk < N and Mk < M such that every cell a(ik,jk),lk in the
reduced matrix ANk×Mk,l

k corresponds to a cell a(i,j),l in the server’s matrix AN×M,l:

∀ik, jk, l : a(ik,jk),lk ∈ Al
k,∃i, j : a(i,j),l ∈ A, a

(ik,jk),l
k = a(i,j),l (6)

In this scenario, there are two broad sets of methods proposed in the literature to perform
client model integration in the server, as reflected in table 3. The first group of methods,
shown in table 3(a), corresponds to algorithms that dynamically select the size of the clients’
models but where all the clients are able to hold models of the same size as the server’s model.
Thus, these methods define an Ms(·) function that determines the N l

k ×M l
k dimensions of

the client’s k model to be used of the weight matrix Al
k in layer l of their model θk. Popular

approaches in this category include Flado [LGZX23] and FjORD [HLA+21]. Note that
they are not applicable to settings where clients have data and computation constraints, as
it is our case. Hence, they are out of the scope of this thesis.
The second group, depicted in table 3(b) and illustrated in figure 8, corresponds to methods

where the clients have fixed-size models that are typically smaller than the server’s model. As
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Table 3. Two broad groups of FL methods with model size heterogeneity. a) FL methods with
dynamic selection of the clients’ model size. All clients are assumed to hold a model of the same
complexity as the server’s model. These methods are not applicable to settings where clients have
data and computation constraints, as it is our case. Thus, they are beyond the scope of this paper.
b) FL methods where the clients have a fixed model size, which can be smaller than the server’s
model size. In this case, the clients apply different strategies to select the portions from the server’s
model to be used in their training. The blue font corresponds to the newly proposed methods in
this thesis.

(a) FL methods with dynamic client model size selection.

Dynamic client size selection methods
Random Gradient

U
pd

at
e

Each round Flado [LGZX23]
Each batch FjORD [HLA+21]
(b) FL methods where clients have a fixed model size.

Selection strategy
Resampled (S) Fixed (F)

C
ov

er
ag

e One group (O) OSM, OSR HeteroFL [DDT21], OFR
Several groups (G) GSR GFM, GFR

Unique (U) FDropout [CKMT18] UFR

we are considering CNNs, we refer to this family of methods as channel selection methods.
The weights of each layer l in a 2D CNN are defined by an (N,M,H,W )l dimensional
tensor, where M and N are the input and output channels of the layer and H and W are
the height and width of the kernel, respectively. Thus, AN×M,l denotes the weight matrix
of each linear layer l in the server’s model, where M and N are the input and output data
dimensions [ZTII88], and a(i,j),l represents the kernel weights of the (i, j) position. In this
case, Ch(·) : AN×M,l → ANk×Mk,l

k determines the mapping between the cells of the server’s
weight matrix Al and the client’s k smaller matrix Al

k for each layer l. Without a loss of
generalization, we assume that the channels are sorted.

2.4 Data heterogeneity
In chapter 5, we focus on data heterogeneity in machine learning, specifically, spurious
correlations, class imbalance, and attribute imbalance.
Let f : X → Y be a predictor function parameterized by θ ∈ Ω, where X is the feature

space, Y is the output space, and Ω is the parameter space. We assume that the feature space
consists of two subspaces: X ⊆ Xy × Xa, where Xy and Xa represent the task-intrinsic and
the attribute feature spaces, respectively. The class label y ∈ Y of a sample x := (xy,xa) is
determined by the discriminative feature xy, whereas the attribute label a ∈ A is determined
by the attribute feature xa, where A is the space of attributes. The training dataset D
consists of n feature-target sample pairs, D = {(xi, yi)}ni=1, where each sample is identically
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and independently drawn from the training distribution Prtr.
Statistical data heterogeneity emerges when there is a subpopulation shift, i.e., when the

representation of subpopulations differs between the training Prtr and the test Prte distribu-
tions. Here, subpopulations are defined by the target labels and the attributes, Y ×A. We
consider three types of statistical data heterogeneity:

2.4.1 Class imbalance (CI)
The distribution of the target labels y is different between the training and test distributions,
such that certain classes are more prevalent in the training than in the test sets, i.e.: Prtr(Y =
y) � Prtr(Y = y′) for some y, y′ ∈ Y where y 6= y′. CI can yield a biased classifier that
performs poorly in samples from the minority class.

2.4.2 Attribute imbalance (AI)
The probability of occurrence of a certain attribute a′ in the training set is much smaller
than that of other attributes a ∈ A and this disparity in prevalence does not hold in the
test distribution, i.e.Prtr(A = a) � Prtr(A = a′). AI can yield a biased classifier towards
the majority attribute a.

2.4.3 Spurious correlation (SC)
There is a statistical dependency between the class Y and the attribute A in the training
distribution, which does not exist in the test distribution, i.e., Prtr(Y = y | A = a) �
Prtr(Y = y) � Prtr(Y = y | A = a′), for some y ∈ Y and a, a′ ∈ A. This spurious
dependency can cause a classifier to perform well on samples where the spurious relationship
holds (e.g., (Y = y, A = a)), but to perform worse where the relationship does not hold
(e.g., (Y = y, A = a′)).

2.5 Privacy
In chapter 4, we measure the privacy of FL models. There are two approaches to do this:
using mathematical approximations to measure differencial privacy [Dwo06], or measuring
privacy against targeted attacks. Adversary attacks can be categorized based on objectives,
such as copying the behavior of the target model or reconstructing information from the
training data [LDS+21]. We use membership inference attacks (MIAs), where a curious
attacker’s target is to determine whether an input-output pair was part of the observed
model’s training data

A (M(f,θ,D), (x, y)) : (x, y) ∈
?
D. (7)

Furthermore, we focus on black-box attacks, i.e. attacks where the attacker has no direct
access to the model’s parameters θg and architecture f , but it can query the model with
data instances to get the model prediction ŷ. The attacker’s purpose is to build an attacker
model A that predicts, for data instance (x, y), if it was part of the training data Dk of
model M(f,θk,Dk), for client c ∈ K. Finally, we consider passive attacks where the attacker
observes the behavior of a system without altering it.
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Formally, the perfect attacker’s model A is given by:

A (f,θk, (x, y)) =

{
1, if (x, y) ∈ Dk,M(f,θk,Dk)

0, otherwise.
(8)

We study the performance of three different passive, black-box MIAs, which are summa-
rized below and are described in more detail in section 4.5.

• Yeom attack, where the attacker chooses a global threshold ν, and selects every data
instance with a loss lower than ν as a member of the training dataset in each client
[YGFJ18].

• LiRA attack, where the attacker has access to an auxiliary dataset Da and trains
shadow models Msw(f,Dsw) on random subsets of this dataset Dsw ⊂ Da. The data
instance is predicted to be a member of the client’s training set if the target model’s
confidence score fits into the sample’s confidence score distribution in the shadow
models [CCN+22].

• tMIA attack, which leverages knowledge distillation to collect loss trajectories to
identify member and non-member instances [LZBZ22]. This attack builds on the idea
that the snapshots of the loss after each training epoch (loss trajectory) can separate
the member from non-member instances better than only using the final model’s loss.

2.6 Fairness
Algorithmic fairness is concerned with the ethical and social implications of automated
decision-making systems. As machine learning systems are increasingly deployed in sensitive
domains such as healthcare, finance, and law enforcement, ensuring their fairness becomes
essential to prevent preserving societal biases.
While individual fairness defines fairness as treating similar individuals in similar ways,

the concept of group fairness defines groups of the population, and requires equal treatment
between them [BHN23]. Groups can be defined based on protected attributes, such as race,
gender, or age. These two fairness notions often come into conflict, reflecting the inherent
trade-offs and tensions in quantifying fairness.
To measure the group fairness in machine learning, one has to take into account the societal

environment where a trained model is applied. Given this, the literature proposed several
fairness metrics [VR18]. In section 6.2.3, we review several fair FL algorithms to determine
the most common fairness metrics in FL. Based on our review, these are equal opportunity

Pr(Ŷ = 1|Y = 1, A = 0) = Pr(Ŷ = 1|Y = 1, A = a), ∀a ∈ A

and demographic parity

Pr(Ŷ = 1|A = 0) = Pr(Ŷ = 1|A = a),∀a ∈ A.

We use these metrics to measure the fairness of federated learning algorithms in chapter 6.
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Chapter 3

Client selection: a taxonomy

Figure 3. Content covered in his chapter in the scope of the thesis.

This chapter incorporates our research contributions presented in the paper A Snapshot of
the Frontiers of Client Selection in Federated Learning published in Transactions on Machine
Learning Research in December 2022 [NLQO22]. Modifications are applied to improve the
flow of the thesis.

3.1 Introduction
In chapter 1, we described the concept of federated learning, where clients work together
under a central server to train machine learning models with privacy in mind. In vanilla
federated learning, all clients behave the same, they share the same goal as the server – to
build a globally robust machine learning model. They are always available and train the FL
model on their private data when requested. However, such limitations are often unrealistic.
One challenge of FL was addresses in the very first FL paper [MMR+17]: to reduce the
communication overhead of scaling FL to a large number of clients, they proposed to select
a random subset of clients to train in every training round.

13
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When a federated learning scenario involves few clients, it is feasible to incorporate their
parameters in every training round. However, as the number of clients increases, so does
the communication overhead, such that considering the data from all the clients becomes
a challenge. At the same time, when the number of clients is large, some of the clients
might have access to redundant, noisy or less valuable data than other clients. Therefore,
client selection methods are introduced to reduce the number of working clients in each
training round. Recent works have shown that client selection methods are able to keep the
performance of the overall model while improving the convergence rate of the FL training
[NY19], reducing the number of required training rounds [GMB+19], or enhancing fairness
in case of imbalanced data [LSBS20].
While implementing sophisticated client selection methods may help to achieve these goals,

they require the server to have information about the clients, such as training time [NY19]
or communication stability [ZFH21]. Thus, the use of client selection methods might have
privacy implications, representing a trade-off between potentially losing privacy and achiev-
ing good performance while keeping the overhead low, improving the overall utility [DLS21;
WKNL20] or the fairness [MSS19; LSBS20] of the system.
In recent years, different client selection methods have been proposed in the literature

[CGSY18; MSS19; ZZWC20] with a wide range of objectives, requirements, and experimental
settings. Such wealth of proposals in such a short timeframe makes it hard for researchers to
properly compare results and evaluate novel algorithms. Furthermore, it limits the ability
of practitioners to apply the most suitable of the existing FL techniques to a specific real-
world problem, because it is not clear what the state-of-the-art is in the scenario required
by their application. The purpose of the research described in this chapter is to fill this gap
by providing a comprehensive overview of the most significant approaches proposed to date
for client selection in FL.
Our contributions are two-fold: First, we present a taxonomy of FL client selection methods

that enables us to categorize existing client selection techniques and propose it as a framework
to report future work in the field. Second, we identify missing gaps in existing research and
outline potential lines of future work in this emergent area.
In section 2.2 we summarized the problem formulation and the mathematical notation used

in the client selection chapter of this document. The structure of the rest of the chapter
is as follows: Section 3.2 describes the proposed taxonomy and identifies future research
directions. Commonly used benchmark datasets are presented in section 3.3, followed by
our conclusions.

3.2 Proposed taxonomy of client selection methods

Our proposed taxonomy, depicted in figure 4, aims to ease the study and comparison of client
selection methods. It contains six dimensions that characterize each client selection method.
The top part of the figure displays the three dimensions (marked in red) that concern the
server in the Federated Learning framework whereas the bottom three dimensions concern
the clients (marked in green) or both the clients and the server (marked in blue). In the
following, we describe in detail each of these dimensions and present the most relevant works
in the client selection literature in FL according to the proposed taxonomy.
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Figure 4. Proposed taxonomy of client selection methods in Federated Learning. The taxonomy
has six dimensions: Policy, Termination Condition, Value Interpretation, Client Characteristics,
Shared Information, and Value Generation. The top three dimensions (colored in red) capture
properties on the server side, the two dimensions colored in green are on the client side, and the
sixth dimension, colored in blue, corresponds to a hybrid client-server property.

3.2.1 Client selection policies

The main purpose of client selection in Federated Learning is to automatically determine
the number of working clients to improve the training process. A broad range of policies has
been proposed in the literature, including a variety of global constraints (e.g. improving the
efficiency in the learning, limiting the amount of time or computation needed, or ensuring
fairness), pre-defined client inclusion criteria, and client incentives.
We provide below a summary of the most prominent works according to their policies for

client selection. The third column in table 4 provides an overview of the client selection
policies of the most representative client selection methods in FL.

Global constraints

The server might define different types of global constraints to drive the client selection
process.
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Table 4. Selected works from the literature and their characteristics according to the proposed
taxonomy. Appendix A.1 shows the detailed descriptions of the methods. Client characteristics:
availability (V ), addressability (D), statefulness (S), reliablity (R), and trustworthiness (T ). Exp
indicates an exploration term with additional randomly selected clients and ES indicates an early
stopping mechanism.

Algorithm Policy Client
characteristics Message Value

generation
Value
interpretation

Termination
condition

EqRepbaseline Selection fairness
V DSRT θ - Probability -

EqWbaseline V DSRT θ, |D| - Probability -

AFLG

Efficiency

V DSRT θ,L Loss-based Probability
and Exp

Fixed rounds

pow-d V DSRT θ, |D|,L Loss-based Ranking Reach accuracy

S-FedAvg V DSRT θ
Shapley values
Validation set Probability Fixed rounds

k-FED V DSRT θ,G Clustering Clusters Fixed rounds

LAG V DSRT θ, Lf Loss-based Threshold Fixed rounds,
ES

FL-CIR V DSRT θ,L Bandit-based Ranking Fixed rounds

FAVOR V DSRT θ
Reinforcement
Learning
Validation set

Ranking Reach accuracy

FedCS

G
lo
ba

lc
on

st
ra
in
s

Limit round time V DSRT θ, T Time-based Ranking Fixed rounds,
Reach accuracy

AFLM
Good-intent
fairness V DSRT θ,L Loss-based Probability Fixed rounds

q-FFL Uniform accuracy V DSRT θ, Lf Loss-based Weights Fixed rounds

Oort Limit round time V DSRT θ,L, T Utility game Ranking
and Exp

Reach accuracy

FLAMEC
Limit client
participation V DSRT θ,L, T , E Utility game Ranking Limited energy

DDaBA Defense against
attacks V DSRT θ Validation set Weights Fixed rounds

LT-FL
Client inclusion

V DSRT θ, T Time-based Clusters Fixed rounds

FDropout V DSRT θ
Model
compression Weights Fixed rounds

CI-MR

Client incentives

V DSRT θ, |D| Shapley values Weights Fixed rounds

FMore V DSRT θ, |D|, T ...
Auction
Utility score Ranking Fixed rounds,

Reach accuracy

CBIM V DSRT θ, T , E ... Contract theory
Utility score Threshold Limited reward
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Training efficiency The most common goal in client selection is to speed up the conver-
gence of the training process. However, formalizing this simple goal may result in different
technical solutions. Some authors [CGSY18; DLS21] focus on reducing the number of clients
in a training round while maintaining the same convergence rate. Chen et al. [CGSY18] show
that communicating only with the right clients can reduce the communication to a tenth
of what it would be in a cyclic iteration of the clients. Later work by Chen, Horvath, and
Richtarik [CHR20] reports that optimal client sampling may yield similar learning curves to
those in a full participation scheme. Other works aim to reduce the total number of training
rounds to reach the same accuracy. Cho, Wang, and Joshi [CWJ22] propose pow-d which
takes half as many iterations to reach 60% accuracy on the FashionMNIST dataset than
random client selection.
Alternative definitions of efficiency include energy consumption. For example, Cho, Mathur,

and Kawsar [CMK22] propose the FLAMEC FL framework that computes energy profiles
for each client and simulates different energy profiles in the federation. They report that
incorporating energy consumption as a global constraint in the client selection method can
save up to 2.86× more clients from reaching their energy quota when compared to the same
method without any energy consideration.
Other authors propose limiting the time of the local training as the main guiding principle

to achieve client selection. This concept was introduced by Nishio and Yonetani [NY19] in
the FedCS method, which filters out slow clients and hence speeds up the overall training
time. FedCS requires clients to estimate Tk, the time needed to perform their round of
learning, and the server selects only clients with Tk lower than a certain threshold. The
authors report that selecting the right clients according to this criterion could reduce by half
the total training time to reach the desired accuracy when compared to federated average
(FedAvg) with limited local training round time.

Resilience Client selection may be used to remove malicious clients from the training
process, thus increasing the resilience of the system against adversarial attacks. Rodríguez-
Barroso et al. [RMLH22] use a server-side validation set DV to measure the accuracy of each
local model. Then, the models with low accuracy are given lower weights. Their results
show that this method is able to keep the same level of performance even if 10 out of 50
clients send malicious model updates. An alternative approach to filter malicious clients is
using Client Incentives. In these methods, the rewards offered to the clients are inversely
proportional to the probability of being a malicious or harmful client. We direct the reader
to section 3.2.1 for a description of such methods.
While client selection can be a tool to fight against attacks, it opens a new vulnerability.

Malicious clients may attempt to be included in the training rounds by changing their be-
havior or their data to be more appealing for selection. For example, the method proposed
by Blanchard et al. [BEGS17] which selects clients with the smallest weight update is vul-
nerable to adaptive attacks. It could be abused by injecting a backdoor with a very small
learning rate, and therefore small weight update. The server would then be selecting this
client over other benign clients.

Fairness An additional policy for client selection is to ensure fairness in the criteria
applied to select clients. In FL, and especially in cross-device FL, algorithmic fairness def-
initions, particularly group fairness definitions adopted in the machine learning literature
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are hard to implement because they require knowledge of sensitive attributes that are only
available on the clients’ side. For example, providing group fairness guarantees according to
a protected attribute (e.g. race or gender), would require the server to collect data of the
performance of the model on different groups according to the protected attribute. How-
ever, the privacy motivation for FL would prevent such attributes from being shared with
the server. One possible way to report sensitive data with privacy protection would be to
use differential privacy [GKN17; PDG21].
In the context of FL, different definitions of fairness have emerged. Work by Mohri, Sivek,

and Suresh [MSS19] aims to increase good-intent fairness to minimize the maximum loss in
the federated training between clients. In the experimental evaluation, the proposed AFLM
method outperforms the baseline uniform distribution in various datasets while increasing
the worst-case accuracy, i.e. the performance on the client with the lowest accuracy. This
principle is related to min-max notions of fairness, such as the principle of distributed justice
proposed by Rawls [Raw04].
Li et al. [LSBS20] define fairness as the property of achieving uniform accuracy across all

clients. This definition corresponds to the parity-based notion of fairness, as opposed to
the min-max principle described above. They propose a novel FL approach called q-FFL
to reduce potential accuracy differences between clients by giving a larger weight to those
clients with a large error during the training process. According to their experiments, the
proposed method yields an increase of the worst accuracy by 3% in a class-split Fashion-
MNIST federated experiment while keeping the average accuracy the same as a state-of-the-
art method (AFLM).
Shi, Yu, and Leung [SYL23] propose a taxonomy to categorize the fairness definitions that

have been proposed in the FL literature. All the proposed fairness definitions belong to
the Server Policies dimension of our taxonomy (see figure 2): accuracy parity and good-
intent fairness would be categorized as Global Constraints; selection fairness could also be
considered a Global Constraint or part of a Client Inclusion policy; finally, contribution,
regret distribution and expectation fairness would belong to the Client Incentives policy.

Client inclusion policies

In some cases, the server might define specific client inclusion policies beyond the global
constraints. For example, if a client has limited, but very relevant or valuable data to the
problem at-hand (e.g. data from an underrepresented demographic group), the server may
define client inclusion policies to ensure that such clients are selected even if they would not
satisfy the global constraints.
Examples of client inclusion policies include ensuring a loss tolerance for communication

packages. Zhou, Fang, and Hui [ZFH21] show that relaxing the global constraints for clients
with poor communication channels not only improves client inclusion but also the overall
performance of the FL system. Their proposed method LT-FL allows clients to discard
lost packages instead of asking the server to resend them. Thus, the communication time
decreases and otherwise poorly-represented clients are able to participate in the training.
An alternative client inclusion policy may be seen in the context of model-agnostic FL.

In this case, low-resource clients have the option to learn different, simpler models. Thus,
the local training may be faster and the communication requires less data transfer. One
example of such an inclusion policy is Federated Dropout (FDropout) proposed by Caldas
et al. [CKMT18], where simpler deep neural networks (with fewer neurons in the layers) are
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Figure 5. Experimental evaluations of proposed incentive mechanisms in the literature lack a
quantitative comparison with state-of-the-art methods on benchmark datasets with a comprehen-
sive performance and efficiency analysis.

learned in clients and the server combines them together into a larger network following the
idea of dropout. Their method shows a 14× reduction in server-to-client communication, a
1.7× reduction in local computation and a 28× reduction in client-to-server communication
compared to uncompressed models.
Following this work, Diao, Ding, and Tarokh [DDT21] and Liu et al. [LWW+22] propose

methods to match weaker clients with smaller models and implement a model-agnostic FL.
In HeteroFL, proposed by Diao, Ding, and Tarokh [DDT21], the smaller model’s parameter
matrix is a cropped version of the complete matrix. During the aggregation, the server
aggregates the models with different sized hidden layers from smaller to larger. They present
experimental results with 5 different sized models, the largest having 250 times as many
parameters as the smallest. They report similar accuracies when setting half of the clients’
models to the smallest size and half to the largest size than when all the clients have the
largest model while halving the average number of parameters. Liu et al. [LWW+22] propose
InclusiveFL where larger models have more hidden layers. They show that for more complex
models (e.g. transformer models with the self-attention mechanism) InclusiveFL works better
than HeteroFL on several ML benchmark datasets.
In chapter 4, we explore the use of model-agnostic FL for another objective: to improve

the privacy of the client models.

Client incentives

A common assumption in Federated Learning is that all the clients are willing to participate
in the training at any time. The reward for their contribution to the federation is access to
an updated, global –and ideally better– model. However, clients might not see the benefit
of the federation for a variety of reasons. For example, stateless clients in cross-device FL
may never receive an updated model from the server after participating because the users
might disconnect their devices before being selected a second time. Thus, an active research
area in the literature of client selection in FL focuses on defining incentive mechanisms
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for the clients so they participate in the federation. Note that such incentive mechanisms
have been extensively studied in other multi-actor areas of science, such as economy [HS92;
LNW99], environmental protection [Nic84; KND+00], mobile crowdsensing [YHSC17], and
shared distributed energy sources [WZQ+19] or human resources [FDM+08].
In the context of FL, the server typically gives a reward to the participating clients ac-

cording to their contribution. According to the work by Zhan et al. [ZZH+21], the incentive
mechanism methods proposed to date may be categorized into three classes, described be-
low. Zeng et al. [ZZW+21] additionally categorize the methods based on the used value
generation techniques, described in section 3.2.4.
The first class of incentive mechanisms considers client resource allocation and gives

rewards based on the computation power, energy usage, or allocated time. For example,
Sarikaya and Ercetin [SE19] offer a Stackelberg game-based solution based on the clients’
CPU power utilization. They study the server’s strategy based on its budget and the trade-
off between the number of learning rounds and the required time of a round with respect to
the number of clients.
Second, the incentive mechanisms may be used to attract clients with good data quality

and quantity. These incentive mechanisms are classified as data contribution incentives.
For example, Song, Tong, and Wei [STW19] use Shapley values [Sha71] to evaluate the data
contribution of clients and reward them accordingly. They define the contribution index (CI)
such that (1) data distributions that do not change the model have no contribution; (2) two
datasets with the same influence on the model have the same CI, and (3) if there are two
disjoint test sets, the contribution index in the context of the union test set should be equal
to the sum of the CI of the two original test sets. The proposed CI-MR method performs
similarly to state-of-the-art methods while calculating the scores up to 5 times faster. Zeng
et al. [ZZWC20] show that measuring the data contribution by means of a clients’ utility
score and applying an auction, the FMore method selects 80% of the participating clients,
resulting in a 40 − 60% speed-up in terms of the number of training rounds necessary to
reach 90% accuracy on the MNIST dataset.
Third, the incentives may be correlated with the reputation of the clients. Such reputation

may be computed from the usefulness of each of the client’s models. In addition, several
works have proposed using a blockchain to keep track of the clients’ contributions and hence
of their reputation [KXN+19a; ZZJ+20]. Kang et al. [KXN+19a] show that removing clients
with a bad reputation may increase the model’s final accuracy. Zhao et al. [ZZJ+20] report
that a reputation score may punish potentially malicious clients while maintaining the global
convergence of the model.

Future work

There are several areas of future work regarding the Policies of the server to perform client
selection.
We refer to the lack of discussion on the privacy-efficiency trade-off more in section 3.2.3.

Here we want to highlight work on privacy as a Global Constraint. Geyer, Klein, and Nabi
[GKN17] defines a privacy budget for each client and proposes an experiment where clients
terminate their participation if their privacy budget is reached. Thus, clients terminate in
different rounds. This line of work can be expanded to more complex budgeting that reflects
the information shared in messages.
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While many client selection approaches have been proposed in the literature, they lack a
vulnerability analysis of potential attacks directed against the approach itself. Future work
in this direction would be needed before a specific client selection method is deployed in
production.
Another potential research direction would focus on the clients’ perspective to define the

client selection strategy. While client incentive policies aim to motivate the clients’ partici-
pation with fair payoffs, there is an opportunity to further study and propose FL approaches
centered around the clients’ interests. In this sense, we identify several relevant research
questions, such as studying the trade-off between data availability and performance of the
local vs federated learning models; developing models to support the clients’ decisions as
to when to join the federated learning scenario; and approaches that would enable clients
to participate in the federation in a dynamic manner, depending on the current state of
the learning model. Recent advances in model-agnostic FL in combination with incentive
mechanisms suggest an interesting direction for future work. One could design a federated
learning scenario, where the server would propose contracts to the clients with different
model sizes and rewards. Then, the clients would be able to select the contract that matches
their available resources and interests the best.
Finally, we believe that there is an opportunity to improve the empirical evaluation of

existing and newly proposed incentive mechanisms for FL. There are 3 key components
–depicted in figure 5– that we consider necessary to include in such an evaluation: first,
a clear explanation as to why the proposed scoring satisfies the requirements of being an
incentive mechanism; second, a performance and efficiency analysis on benchmark datasets;
and third, a systematic comparison with other state-of-the-art client selection methods. As
can be seen in the figure, most of the proposed methods in the literature fail to include
one or more of these three elements. While several survey papers of incentive mechanisms
in Federated Learning have been published (see e.g. Zhan et al. [ZZH+21] and Zeng et al.
[ZZW+21]), to the best of our knowledge, none of them presents a thorough quantitative
analysis of the topic. In section 3.3 we further discuss the scarcity of available benchmark
datasets and experimental setups for Federated Learning.

3.2.2 Client characteristics
FL methods are implemented with certain assumptions regarding the characteristics that the
clients should have. Thus, the Client Characteristics are the next dimension in the proposed
taxonomy. The second column in table 4 provides an overview of the client characteristics
required by a representative sample of the client selection methods proposed to date in the
FL literature.
According to table 1 from Kairouz et al. [KMA+21], FL clients may have four important

characteristics: availability, addressability, statefulness and reliability. We propose to add
a fifth characteristic, trustworthiness, that should be considered when designing a client
selection method in a FL scenario. These five characteristics are defined as follows:

Availability (V or V ): Let A be the active client set, i.e. the clients that are ready to
participate in the next training round. In each training round, t, the server may select the
participating clients St from the active client set At. Generally, St ⊆ At ⊆ K. Sometimes,
for example in cross-silo scenarios, At = K, ∀t = 1...T . The assumption of client availability
in a FL method will be denoted by V , otherwise V .
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Addressability (D or D): Clients have unique identifiers, such that the server is able to
individually address them and communicate with specific clients (D). Conversely, the server
communicates in a broadcasting manner, sending the same message to all the clients (D).

Statefulness (S or S): In a stateful scenario (S), the clients are able to participate in
multiple training rounds and they can refer back to the weights or parameters of previous
rounds. In a stateless scenario (S), each client participates only once in the learning process,
so the client selection (and aggregation) policy is not able to depend on their previous
performance.

Reliability (R or R): Even if a client meets all the selection criteria and is selected by
the server to participate in a round of training, it may fail before sending its information
to the server. Federated learning methods that assume that all participating clients will
successfully report back at the end of their local training make a reliability assumption, R.
Otherwise, the methods are characterized as R.

Trustworthiness (T or T ): In an ideal scenario, all clients are sharing truthful information
with the server and hence they are trustworthy, T . However, clients may be malicious (T )
and share false information. Previous research in FL has focused on tackling this problem,
such as Kang et al. [KXN+19a] who propose a client selection incentive that gives a bad
reputation score to potentially harmful clients and Rodríguez-Barroso et al. [RMLH22] who
gives less weight to clients with lower accuracy on a server-side validation set.
In general terms, these five characteristics of the clients are known to the server in cross-silo

FL scenarios. However, in cross-device scenarios, several of these features may not be known
to the server and the methods should be able to function without depending on any of them.
We would like emphasize the importance of new FL client selection methods to identify their
dependencies on these client characteristics such that different approaches may be compared
and the reproducibility of the results is facilitated.

Future work

Client characteristics are not always considered when designing client selection policies which
leads of inefficient or inconsistent FL systems. For example, cross-device FL is in many
cases stateless as clients may join to the system only once during the training. However,
there are reputation-based client incentives (based on the client’s performance in previous
rounds) proposed for cross-device FL that are impossible to implement as the server does
not have access to the clients’ state in a stateless context [KXN+19a]. The same problem
was identified by Wang et al. [WCX+21] for FL in general. We would like to emphasize
the importance of clearly describing the required client characteristics when proposing novel
approaches to FL to ease the comparison with other methods and ensure the reproducibility
of the results.
Trustworthiness in FL is often addressed at the level of optimization algorithms or model

aggregation. Blanchard et al. [BEGS17] propose an algorithm to weigh the client models
during aggregation in a way to reduce the effect of outliers. However, few research works
address trustworthiness during client selection by e.g. removing harmful clients Zhao et
al. [ZZJ+20]. We believe the addition of this feature to the client characteristics in our
taxonomy may boost future research in this direction.
In addition to Client Characteristics, the proposed taxonomy includes a dimension related

to the kind of information that the client shares with the server.
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3.2.3 Shared information by the client
Federated learning was proposed with the motivation of preserving privacy by enabling a
central server to learn from distributed client data without ever having access to the actual
data. As the learning heavily depends on the information shared by the clients with the
server, it is important to understand and analyze the types of messages that the clients send
to the server.
Client selection requires analyzing information about the clients. Thus, there is a trade-off

between a potential privacy loss from the client’s perspective and the goals of implementing
client selection. This section of the proposed taxonomy highlights the importance of studying
and characterizing such a trade-off.
The most commonly shared client information are either the updated client weights (θi) or

the change in the weights when compared to the previous learning round [NN21; WKNL20].
Additional methods proposed in the literature use the loss (L) of the clients’ model [GMB+19;
MSS19; YWZ+21].
Moreover, clients might share additional information with the server. Examples from the

literature may be categorized into two groups. Firstly, scalar descriptors, such as the
Lipschitz-smoothness of the client loss function (Lf ) [CGSY18; LSBS20], the total size of
the client data (|D|) [STW19; CWJ22; ZZWC20] or the expected training time on the client
(T ) [NY19; KXN+19a; ZZWC20; ZFH21].
Secondly, a modified, compressed version of the client data, such as a vector G of

cluster centers computed from the clients’ data [DLS21].
The message sharing between the client and the server is denoted by vk = g(Mk), k ∈ K,

where Mk is the shared information by client k. To select the best clients, the server needs to
assign a value (vk) to each client. The function g generates this value from the client’s shared
information. This Value Generation process (described in section 3.2.4 below) may be done
on either the server or the client side. Note that a server-side validation process to evaluate
the clients’ models reduces the server-client communication, but adds extra overhead on the
server as it has to run all the client models on the validation set (DV ) [WKNL20; NN21].
The fourth column in table 4 includes the types of Messages send by the clients to the

server in each of the selected representative papers from the literature and the fifth column
describes the Value Generation functions used by such papers.
To preserve the clients’ privacy, several privacy-preserving methods have been used in

FL frameworks, such as differential privacy Abadi et al. [ACG+16] and secure aggrega-
tion Bonawitz et al. [BIK+17]. Despite a call from Wang et al. [WCX+21] in a general
field study to make client selection methods compatible with privacy-preserving methods,
current client selection works do not discuss their compatibility. For example, client selection
approaches relying on a server-side validation set (see Value generation column in table 4)
cannot apply secure aggregation as they require server-side inference on the local models.
Similarly, client selection strategies might not work if local differential privacy is used to
disclose the clients’ update Duchi, Jordan, and Wainwright [DJW13].

Future work

While current works analyze the communication in terms of performance and calculate the
trade-off of including additional messages, there is a lack of research analyzing the privacy
cost of sharing increased amounts of information between the clients and the server. In addi-
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tion, future work is needed on the interplay between client selection and privacy-preserving
methods, such as differential privacy and secure aggregation.
Using locally generated synthetic data for client selection may be another fruitful research

direction. Tackling the challenge of non-identically and independently distributed (IID)
distributed data problem has motivated GAN generated synthetic data sharing and progress
was made in this direction [XYG+20; RMR+21], however, these methods do not leverage
the client selection, only use all clients or implement random selection.
The next dimension in the proposed taxonomy is Value Generation, i.e. the process by

which the server assigns a value to each client that will be used to inform the client selection
process.

3.2.4 Value generation
Once the server receives each clients’ shared information Mk, it generates a relevance value
(vk) for each client. This value is used to select the set of participating clients in the next
round of training (St). In this section, we summarize the most significant Value Generation
approaches proposed in the literature.
While the value generation typically takes place on the server side, in some cases the clients

send an already processed value to the server, or the value might be even computed in both
sides. We discuss how the server interprets this generated value in section 3.2.5.
A commonly used technique is to evaluate the clients directly using their local training loss.

Intuitively, if a client has a large loss, the training would benefit from more rounds of the
client’s data. However, these loss-based methods need to store the results in previous rounds
of the training, requiring either stateful clients [CGSY18] or clients that are able to estimate
their loss in the current round. In this case and to reduce the overhead, some methods use
a random selection of clients first (A ⊂ K) and then implement a more sophisticated client
selection strategy on this subset of clients. In [CWJ22], the authors show that optimizing the
size of this subset has a positive impact on the model’s performance: their pow-d method
outperforms EqRepbaseline by 10% and AFLG by 5% on the FMNIST dataset.
Other research suggests that the loss is only one of different metrics that one could optimize

for. Lai et al. [LZMC21] proposes a utility function composed of different terms, including
the loss-based statistical utility and the system’s utility derived from the time needed for
the training. They report a significant speed-up in training time: the proposed Oort reaches
better accuracy in 10 hours than a random selection method in 30 hours on the OpenIm-
age [KRA+20] image classification task. Cho, Mathur, and Kawsar [CMK22] incorporates
a third utility term: an energy consumption-based score. They show that distributing the
workload with respect to the energy usage doubles the number of training rounds without
dropping clients due to reaching their energy limit. The general formulation for computing
an overall utility score is given by equation (9), where Bk ⊂ Dk is a subset of the kth client’s
data.

Util(k, t) = u1(Lt
k,Bk)︸ ︷︷ ︸

Statistical utility

× u2(T t
k )︸ ︷︷ ︸

System utility

× · · ·︸︷︷︸
Other utilities

(9)

Other scholars have formulated the client selection problem as a bandit problem. Yang
et al. [YWZ+21] propose a multi-armed bandit approach where the clients are the arms and
the St client set is the superarm at round t to achieve reduced class imbalance between clients
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and thus increase the training efficiency. Their method yields a 10% increase in accuracy
when compared to random selection in a non-IID scenario of the CIFAR10 dataset.
In cooperative game theory, Shapley values are used to determine the contribution of

clients or the value of their data [Sha51]. In FL, they are used to give a fair payoff to partic-
ipating clients based on their contribution [WDZ19; STW19; LAS+20] and to identify the
most valuable clients for the next training round [NN21]. Wang, Dang, and Zhou [WDZ19]
use Shapley values to determine the features with the largest contribution in a vertical FL
scenario. Song, Tong, and Wei [STW19] show that Shapley values are effective to compute
a contribution index of the clients. Liu et al. [LAS+20] simulate clients with different data
quality levels from the MNIST dataset and show that their Shapley value-based method gives
higher scores to the clients in higher data quality group. While the above 3 works use Shap-
ley values for incentives, Nagalapatti and Narayanam [NN21] show that removing irrelevant
clients using Shapley values can increase the overall accuracy. Their S-FedAvg increases
the validation accuracy from 40% to 80% when compared to FedAvg in a MNIST-based
experiment.
The Stackelberg game is a market modeling structure with two types of actors: leaders

and followers. In FL, the server acts as the leader and the clients as the followers. In Sarikaya
and Ercetin [SE19], the server proposes a price for the clients’ resources which the clients use
to compute their utility scores that are sent to the server. Finally, the server selects the clients
with the highest scores. Their experiments support that there is an optimal number of clients
from an efficiency perspective that may be identified with such a client selection approach,
despite the availability of more clients. Furthermore, Pandey et al. [PTB+19] propose to
reward the clients’ local accuracy and show that their method can achieve optimal utility
scores in a small, 4-client scenario. Hu and Gong [HG20] propose a Stackelberg game to give
incentives depending on the clients’ data privacy loss. Unfortunately, these works lack both
a comparative analysis of their empirical results with other state-of-the-art approaches and
a performance analysis on commonly used benchmark FL datasets.
Auction and contract theory have also been proposed to assign a value to clients in FL

incentive mechanisms. In this case, the server acts as the auctioneer and the clients bid
with their local resources. The FMore system presented in Zeng et al. [ZZWC20] uses an
auction to select the clients with the best utility-bid pair. The authors report a reduction
of 45 − 68% in the training rounds needed to reach a given accuracy in experiments with
various datasets. Jiao et al. [JWN+20] demonstrate that the auction-based method can be
applied in a FL scenario where clients compete for wireless channels. Deng et al. [DLR+21a]
measure the learning quality of clients and apply an auction to select the participants. Their
method is robust against attacks and achieves 50−80% accuracy in tests where the FedAvg
baseline method only achieves 10%.
In contract theory, the server proposes rewards for different client types, and the clients

select the cluster they fit in according to their local resources. Kang et al. [KXN+19b]
separates the different types of clients by their local model accuracy. Their work focuses on
maximizing the profit that remains at the server after incentive payout. Lim et al. [LXM+20]
also defines the client groups based on data quality and quantity. Their experiments show
that these methods effectively reward the desired clients and motivate them to participate
more than the less relevant ones.
Finally, reinforcement learning (RL) has also been proposed for client selection. [WKNL20]

frame the client selection process as a RL task as follows: the server acts as the agent; the
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state st = θt,θt
1, ...,θ

t
N summarizes the current parameters in each client; the action consists

of selecting a client for the next round; and the reward is the server’s side accuracy. In
their experiments, the proposed FAVOR method reduced the number of communication
rounds by 23 − 49% on baseline datasets. Deng et al. [DLR+21b] takes the client’s data
quality into account during value generation and shows that their method selects fewer and
more suitable clients than a simple baseline, achieving 6% better accuracy while being 2×
faster. RL has also been used to implement incentive mechanisms combined with auctions or
Stackelberg games. Jiao et al. [JWN+20] implement a RL-based auction that outperforms
a greedy auction by 2− 5%. Zhan et al. [ZLQ+20] propose using reinforcement learning to
solve the Stackelberg game problem and approximate the equilibrium.

Future work

Regarding utility score-based models, there is a trend to find new, relevant descriptors of
the system – such as energy in Cho, Mathur, and Kawsar [CMK22], include them in the
utility function and show better results than those of previous methods. This trend can
be recognized in incentive mechanisms as well, where the reward function is based on the
utility of local resources. This line of work suggests a potential direction of future work
by systematically collecting all the potential parameters and measuring their impact on the
utility of the clients.
While some progress has been made in terms of contract theory, state-of-the-art methods to

select contract groups have not investigated all the potential parameters of the clients. Kang
et al. [KXN+19b] demonstrate that the number of contract groups impacts the performance,
such that it would be important to investigate different clustering methods. Additionally,
this technique does not address the issue of outliers and of clients in low-value groups which
might be discriminated unfairly.
Once the clients have a value assigned to them, the server needs to interpret the values to

perform the client selection. Thus, the next dimension in our taxonomy is Value Interpreta-
tion.

3.2.5 Value interpretation
At the end of the client valuation step, each client has been assigned a value on the server’s
side. Based on this value, the server selects the clients that will be part of the next training
round.
The clients’ values are typically interpreted as rankings, probabilities, or weights. When

the values are interpreted as a ranking, the server selects the top n clients with the highest
values [NY19; WKNL20; CWJ22]. If they are interpreted as a probability to be selected,
the clients are chosen according to such a probability [GMB+19; MSS19; NN21]. Finally,
the values might be considered to be weights that are applied to the clients’ results, yielding
a weighted sum of client data in the aggregation [STW19; LSBS20].
In addition to these three approaches to Value Interpretation, scholars have proposed

alternative methods to interpret the clients’ data. Chen et al. [CGSY18] propose using a
threshold to be applied to the client values, which results in a dynamic number of selected
clients in each training round. In their experiments, they report that fewer clients (and
hence less communication) are needed as the training progresses, and the training reaches
the same accuracy 5× faster and with 10× less communication than the baseline. Kang
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et al. [KXN+19a] keep a reputation score of the clients and only select the clients with a
reputation above a pre-defined threshold. They report that increasing this threshold and
hence selecting fewer clients boosts the accuracy of the trained model.
Other scholars have proposed clustering the clients according to different criteria (e.g.

communication costs, available resources, data characteristics) and only a few representatives
from each cluster are selected and shared with the server. All the clients in a cluster are
treated in the same way from the server’s perspective. Examples include Dennis, Li, and
Smith [DLS21] who select a reduced number of clients from each cluster of similar clients
and report 35% less variance in the clients’ final test accuracy when compared to random
selection, indicating a possible direction towards Good-Intent Fairness; and Zhou, Fang, and
Hui [ZFH21] who cluster the clients according to the communication cost with the server.
Note that several methods proposed in the literature leave space for exploration in the

process of Value Interpretation. We denote these methods with Exp in table 4. In this case,
the server selects a subset of the clients according to their value and leaves a predefined
number of slots open to add clients which are selected randomly. For example, Goetz et
al. [GMB+19] selects |St| − ε clients based on probability and then fills the rest ε clients
by random sampling. With a loss-based value generation function, their AFLG method
achieved a 2% area under the curve (AUC) performance increase while needing 30 − 70%
fewer epochs to reach this performance compared to a random selection of clients.

Future work

The final number of participating clients has an impact on the training process. In most
cases, this number is defined based on the available resources, such as energy, communication
bandwidth, or incentive payouts. The Value Interpretation step provides a method to select
the number of participating clients depending on such constraints. However, many Value
Interpretation approaches require the definition of parameters, such as thresholds or the
number of clusters. Thus, automatically identifying the optimal number of participating
clients based on their values is still an open research problem.
Another direction of future work consists of investigating further the exploration-exploitation

trade-off in client selection. While randomness (i.e. maximal exploration) gives a chance
to include unseen clients and improves selection fairness, it also reduces the effectiveness of
the selection method. Finding the right balance in the exploration-exploitation spectrum is
therefore a valuable research question to pursue.

3.2.6 Termination condition
The last dimension in the proposed client selection taxonomy is the Termination condition,
which is defined by the server. The termination condition determines when to end the
Federated Learning training process, and hence it is an important choice of the experimental
setup. The definition of the termination condition typically depends on the goal and priorities
of the FL system. The seventh column in table 4 provides an overview of the termination
conditions of a sample of the most representative client selection methods proposed to date
in the FL literature.
We identify three main categories regarding the termination condition.
In the first category of methods, the learning process ends after a fixed number of

rounds (T ) of federated training. In simulated scenarios, this termination condition helps
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to identify whether different methods reach the same accuracy. However, in some works,
the methods do not reach their best performance in a predefined number of rounds [CHR20;
CMK22]. In this case, it is important to motivate why the experiments ended at that point.
For real-world scenarios, this termination condition is easy to implement.
In the second category of approaches, the learning process ends when a minimum re-

quired accuracy is achieved. This termination condition is particularly helpful to compare
different federated learning methods regarding how quickly they achieve the desired accu-
racy. The minimum required accuracy may be determined by the performance of a baseline
method or by the task at hand to solve with the federated learning system [NY19; ZZWC20;
LZMC21].
Finally, alternative termination conditions may be defined from the perspective of limiting

the participation of a client: for example, Cho, Mathur, and Kawsar [CMK22] limit the
energy drain a client’s device is allowed to endure. Furthermore, [KXN+19a] limit the
reward clients can receive in an incentive mechanism, thus the experiment finishes when all
the rewards are spent. If the server has a validation set, it may apply an early stopping (ES)
approach. Otherwise, the client may suggest that they are unable to meaningfully contribute
to produce a better model. In [CGSY18], the proposed LAG-WK FL system allows the
clients to evaluate whether they should send an update to the server or not, and the training
stops when no client sends a new round of parameters.

Future work

In terms of future work regarding the termination condition, we highlight two potential
directions. First, privacy could be considered as a key factor to define the termination of
the learning process [GKN17]. The PyShift package, designed by Ziller et al. [ZTL+21] was
implemented with this consideration in mind, giving a privacy budget to the clients which is
reduced every time the server accesses information from the specific client. Beyond PyShift,
we identify two potential lines of future work: an analysis of the potential privacy loss of the
clients that participate in several training rounds and the inclusion of a participation budget
as a global constraint to protect the privacy of the clients’ data.
Second, current works give the right of termination to the server. However, in a real-life

scenario, the clients could also decide to stop their participation in the training process.
Incentive mechanisms aim to achieve fair client participation, but they still give the power of
termination to the server and generally do not consider the clients’ interests or perspectives.
Client-centric termination policies could therefore be a potential line of future work.
In addition to the six previously described dimensions for client selection in FL, we would

like to highlight the importance of establishing benchmark datasets and experimental frame-
works to facilitate the reproducibility of the proposed models and enable the development
of comparative analyses. In the next section, we provide a summary of the most commonly
used datasets in the literature of client selection in FL.

3.3 Datasets and benchmark experiments
Given the distributed nature of FL and its focus on privacy protection, it is difficult to
produce and share realistic open-access Federated Learning datasets.



CHAPTER 3. CLIENT SELECTION: A TAXONOMY 29

Table 5. Commonly used datasets in client selection experiments in FL. Clients are either split
by classes, or more naturally along a feature of the data– for example, by writers of social media
posts.

Dataset Split Type Methods

MNIST [LeC98] Classes Image S-FedAvg, FAVOR, CI-
MR, FMore, CBIM,

FashionMNIST [XRV17] Classes Image
pow-d, FAVOR, FedCS,
q-FFL, AFLM, FMore,
DDaBA

EMNIST [CATV17] Classes Image FDropout
FEMNIST [CDW+19] Writers Image k-FED, DDaBA

CIFAR10 [Kri09] Classes Image
FL-CIR, FAVOR, FedCS,
FDropout, FMore,
DDaBA

Shakespeare [CDW+19] Roles Text k-FED, q-FFL
Sent140 [GBH09] Writers Text q-FFL
Reddit (multiple variations) Writers Text q-FFL, Oort, AFLG
UCI Adult Dataset [Bla98] PhD or not Tabular q-FFL, AFLM
London Low Carbon
[MO12; SCT+15] Households Timeseries [SO21; BFA21]

Thus, most of the experiments reported in the FL literature have been performed on
artificial FL datasets, generated from well-known benchmark machine learning datasets.
Table 5 includes a summary of these benchmark datasets and their characteristics.
Note that creating an artificially distributed dataset from an originally centralized one

requires designer choices to be made. In the current client selection literature, even if two
papers use the same dataset, the results are in most cases not comparable due to different
choices, such as a different distribution of the data. Moreover, the models that are used (e.g.
deep neural networks) vary in different evaluations, adding another layer of difficulty to
make comparisons. Given the low reproducibility of current benchmarks, a fair comparison
between methods requires the researchers to re-implement and tune each of the relevant past
works. The taxonomy proposed in this paper helps to identify the most important methods
and their characteristics to enable such a comparison.
In general terms, we find two major approaches to create distributed datasets for client

selection in FL. The first approach generates clients based on the target classes of a classi-
fication dataset. With this method, researchers are able to manipulate the non-IID nature
of the clients yet the dataset will inherit –potentially unknown– dependencies. For example,
in the case of hand-written digits datasets, it is known that there are multiple samples from
the same writer. An ideal dataset to simulate a realistic client selection experiment would
need to have a large amount of non-IID clients. Unfortunately, this approach does not seem
to satisfy such a condition.
In the second approach, the clients are generated based on a feature of the samples. In

this case, the feature may be the writer of the digits in the MNIST datasets or the author
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of posts in social media platform datasets – such as Sent140, Reddit listed on table 5, or
StackOverflow [RCZ+20]. Cross-silo FL scenarios might be simulated by using multiple
publicly available datasets and assigning one dataset to each of the clients.

In summary, generating FL datasets from known benchmark datasets does not accurately
represent the FL problem at hand, yet obtaining real FL datasets is challenging. We believe
that there might be an alternative path moving forward. There are fields with historically
available distributed datasets where privacy concerns are emerging. In these cases, the ex-
isting data could be leveraged to propose privacy-preserving FL approaches. One of such
fields is residential energy consumption. Given current global energy market trends, building
accurate predictions of energy consumption will be increasingly relevant both for consumers,
producers, and energy distributors. With the adoption of smart meters, it is possible to
collect detailed data on the consumers’ side. In fact, there are several energy datasets avail-
able, such as the London Low Carbon project data [MO12; SCT+15]. However, analyzing
such sensitive data centrally has clear privacy consequences [VMFS21]. Thus, there is an
increased need and interest towards FL techniques applied to this use case [SO21; BFA21].
Other domains that could also benefit from FL include self-driving cars, smart city applica-
tions, and wearable IoT devices.

Moreover, in many domains there might be several sources of data available to tackle a
specific problem. Following the example of the energy consumption prediction problem,
in addition to the energy consumption patterns, there are household [SCT+15; Wil14] and
weather datasets. Research on model-agnostic FL would enable building models that leverage
datasets of different natures across clients.

Beyond using non-FL, pre-existing datasets, there are ongoing efforts to develop specific
benchmark datasets for FL. First, we would like to highlight that OpenMinded1 has started
an initiative to build a network where researchers can access distributed data for FL while
preserving privacy. Second, the LEAF framework by Caldas et al. [CDW+19] collects 6
datasets and defines a specific split of the data designed for federated learning.

Regarding baseline models, the reviewed client selection research typically includes the
FedAvg algorithm by McMahan et al. [MMR+17] as the baseline. While this offers a much-
needed standardization in the experimental evaluations, there are more recent federated
optimization algorithms that we believe should be considered as baselines, such as FedAdam
and FedAdagrad [RCZ+20]. We would like to emphasize the importance for scientists to
embrace an open science approach, sharing both the data and the code of newly proposed
models. We would also encourage the community to leverage rapidly maturing Federated
Learning frameworks – such as TFF 2, PyShift 3, and Flower 4– to ease the reproducibility
of the results and enable the integration of novel client selection strategies into other parts
of the federated pipeline, such as FL optimizers or differential privacy frameworks.

1OpenMinded: The Medical Federated Learning Program. Accessed: 2022-06-14, https://openmined.
hubspotpagebuilder.com/medical-federated-learning-program

2https://www.tensorflow.org/federated
3https://github.com/OpenMined/PySyft
4https://flower.dev/

https://openmined.hubspotpagebuilder.com/medical-federated-learning-program
https://openmined.hubspotpagebuilder.com/medical-federated-learning-program
https://www.tensorflow.org/federated
https://github.com/OpenMined/PySyft
https://flower.dev/
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3.4 Conclusion
As an emergent field, documenting, properly evaluating, and comparing novel Federated
learning methods is a complex task. In this chapter, we have provided an overview of the most
notable works in client selection in FL. We have proposed a taxonomy to help researchers
identify and compare previous approaches and to support practitioners and engineers in
finding the most suitable method for their task at hand. Our taxonomy is composed of 6
dimensions to characterize client selection methods: Policies, Termination Condition, Client
Characteristics, Shared Information, Value Generation, and Value Interpretation.
The Policies, Client Characteristics, Shared Information and Value Generation help identify

the most suited method to satisfy the requirements and goals in a specific scenario. Value
Interpretation and the Termination Condition are important to characterize the evaluation
and enable the comparison of existing methods.
We have also outlined potential lines of future research regarding each of the six dimensions

of the proposed taxonomy and highlighted the need for FL benchmark datasets and models
to accelerate progress and ease the comparison of proposed approaches in this field. We hope
that the proposed taxonomy will prove to be helpful in this regard.
In the next chapter, we explore the model inclusion methods introduced in section 3.2.1,

specifically, the privacy implications of different model integration methods in federations
where the clients learn models of different complexities.
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Chapter 4

Privacy: a model heterogeneity
analysis

Figure 6. Content presented in this chapter in the scope of the thesis.

This chapter is based on the findings reported in the scientific publication Privacy and Accu-
racy Implications of Model Complexity and Integration in Heterogeneous Federated Learning
published in IEEE Access in February 2025 [NLQO25]. Modifications are applied to improve
the flow of the thesis.

4.1 Introduction
In chapter 3, we provided a taxonomy of client selection strategies in FL. One such method
consists of allowing different model sizes in the clients to foster client inclusion (see sec-
tion 3.2.1). [CKMT18] and [DDT21] showed that reduced model complexity for low-resource
clients can be effectively used to include them in the FL process. Additionally, previous re-
search showed that in centralized machine learning, model complexity is closely related to
memorization (overfitting). [YGFJ18] demonstrated that the smaller the model, the less
vulnerable it is to privacy attacks (see section 4.2). Based on these findings, in this chapter

33
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we aim to answer the question of whether reduced model complexity in certain clients in a
heterogeneous FL setting can improve the privacy of the training.
As described in chapter 1, FL comes with some core assumptions regarding the model type,

the client data, and system behavior. Compared to vanilla FL, heterogeneous federated learn-
ing [YFD+23] refers to a more complex and realistic variant of FL where the participating
clients have diverse conditions in terms of data, computing resources and model architec-
tures. In this chapter, we focus on one type of heterogeneity namely model size heterogeneity,
where different clients learn models of the same type but with varying complexities to adapt
to their data and computational capabilities5.
Several approaches have been proposed in the literature to implement FL with model size

heterogeneity [CKMT18; DDT21; HLA+21; LGZX23]. However, they are generally seen as
independent methods.
Furthermore, recent work discuss that regarding FL as a privacy-preserving solution by

design is flawed. Research has shown that sensitive information about the original data
can be inferred by analyzing the model parameters that are shared in the communication
rounds [FJR15; CLE+19].
To the best of our knowledge, no study has explored the privacy implications of different

heterogeneous FL methods. In this chapter, we fill this gap by providing the following 4
contributions:
(1) We are the first to frame existing heterogeneous FL methods in a novel taxonomy

according to the adopted strategies to integrate the clients’ models in the server’s model;
(2) This taxonomy leads to the identification of seven new heterogeneous FL methods to

perform client model integration in the server;
(3) We empirically evaluate the 7 proposed heterogeneous FL approaches and 2 state-

of-the-art methods –namely HeteroFL and FDropout– from the perspective of server
accuracy, and client accuracy and privacy on three widely used image datasets;
(4) We find that randomness in the strategy used to perform client model integration

enhances the clients’ privacy while keeping competitive performance on the server’s side. In
sum, our work provides the first empirical evidence on the privacy-accuracy implications of
client model integration in heterogeneous FL.

4.2 Dataset size, privacy, model size and accuracy
Previous work has shown that as models get more complex, they are more vulnerable to
MIAs. For example, [YGFJ18] demonstrate that their attack’s accuracy increases as the
model size increases on standard benchmark image datasets. In federated learning, Li et
al. [LWC+22] reported that, the larger the models, the more vulnerable they are to model
memorization attacks. In their case, it was a horizontal FL architecture with the same
model (ResNet) both in the server and the clients. Other works have highlighted that over-
parameterized models are vulnerable to membership memorization attacks [ZXS+23].
In this section, we shed further light on this topic by focusing on the privacy-accuracy

trade-off in FL with respect to dataset and model size, and from the perspective of both the
server and the clients. Note that prior studies have only analyzed the server’s performance.

5In this chapter, we use the term heterogeneous FL to refer to heterogeneous FL methods where the
clients learn models of the same architecture but different complexities than the server’s model.
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(a) (b)

Figure 7. (a): Exemplary illustration of the correlation between the privacy attack advantage for
the Yeom attack and the dataset size from the clients’ perspective. Results for 5 repeated exper-
iments on the CIFAR-10 dataset using the FedAvg architecture with 10 clients having different
dataset sizes, resulting in 50 client models. Each dot depicts a client in one federated training and
the color represents different model complexities (CNNs), characterized by the number of parame-
ters, ranging from 30k to 1.6 million. Note the negative correlations between the size of the clients’
dataset and the attack advantage, as well as between the model’s complexity and the associated
attack advantage. (b): Privacy-accuracy trade-off of the data depicted in (a) by averaging experi-
ments across clients per model complexity. In addition to CIFAR-10, we also show the trade-off for
the CIFAR-100 and FEMNIST datasets. The attacker’s advantage and test accuracy on the clients
increases as the model size increases. Observations in (a) and (b) suggest that model-agnostic
federated learning could be a privacy-enhancing solution.
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By means of an empirical illustrative example, we show that, for a given model and an
FL scenario, there is a strong negative correlation between the size of the clients’ datasets
and models, and their privacy. We measure a model’s privacy by its vulnerability againsts
membership inference attacks (MIAs). We discuss MIAs in detail in section 4.5. We use
the Yeom attack [YGFJ18] for this illustrative experiment as it requires significantly less
computation than the other, more recent MIAs. This attack occurs on the last update the
client sends to the server in round T , AYeom(θ

T
k ).

We perform the experiments on the CIFAR-10 image dataset (see section 4.8 for a descrip-
tion of the dataset) with 10 homogeneous clients and a FedAvg FL architecture [MMR+17].
FedAvg follows the standard FL steps described in chapter 2 and computes the global model
parameter by averaging the local model updates (see equation (2)).

To ensure a fair evaluation, the attacker’s knowledge dataset DA + for the Yeom’s attack
is proportionate to the size of the training dataset. Specifically, we select 1%: |DA +| =
min(3, 0.01|Dk|) for the attack on client k with dataset size |Dk|. The attack test dataset
DMIA contains the same number of samples from the training set as samples from outside of
the training set. If the client k has less than 5, 000 data samples, we test on all of the client
data samples with non-member examples from the test set, so that |DMIA| = 2Dk, otherwise
it is capped at 5, 000. With such a dataset setting, a simple baseline which guesses that
each MIA test data point is part of the training dataset would give a 50% accuracy. We
define the attack advantage [HSS+22] as the improvement of an attack when compared to
this baseline according to: Adv(A ) = 2(Acc(A )− 50), where Acc(A ) is the accuracy of the
attacker’s model.

Regarding the machine learning models, we adopt the architecture proposed in [DDT21].
It consists of a convolutional neural network (CNN) with 4 convolutional layers and one
fully connected layer at the end. We adjust the model complexity by changing the number
of channels in the convolutional layers and the number of units in the last fully connected
layer. We define 4 levels of model complexity and train 5 models for each level of complexity
using FedAvg with class-balanced data in each client, resulting in 50 client models. The
complexity of the models is measured by the number of parameters, ranging from models
with 30k to models with 1.6 million parameters.

For each model complexity, we compute the Pearson correlation coefficient between the
logarithm of the clients’ dataset size, log10(|Dk|), and the attack advantage on the clients’
final update, Adv(AYeom(θ

T
k )). Figure 7(a) visually illustrates the correlation between the

client’s dataset size and the attack advantage on the models of increasing complexity on
the CIFAR-10 dataset. Note that clients with less than 400 data points are not considered
in the calculation as their attack performance is not consistent through runs due to having
very small (< 4) attacker knowledge. Figure 7(b) depicts the privacy-accuracy trade-off by
averaging experiments across clients for each model complexity on the CIFAR-10, CIFAR-
100, and FEMNIST datasets. We observe strong negative correlations between the size of the
clients’ dataset and the attack’s advantage; and between the clients’ model complexity and
the corresponding attack’s advantage. We also observe that both the attacker’s advantage
and the test accuracy on the clients increase as the model size increases. These results
suggest that model-agnostic FL could enhance privacy both in the server and the clients by
means of learning models in the clients that are smaller than the server’s model.
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4.3 Related work
In this section, we present the most relevant previous work on FL with model heterogeneity
and on privacy attacks in FL.

4.3.1 Model heterogeneity in FL
In traditional FL all clients use the same model architecture as the server. However, this
approach is unrealistic when clients have different computational and communication capa-
bilities. FL with heterogeneous client models has been proposed to address this limitation
as it enables training a diversity of models in the clients according to their capacities. There
are two broad types of heterogeneous FL methods:

Knowledge transfer

In the first category, clients leverage a public dataset to communicate via knowledge dis-
tillation, and learn different models without sharing a global model with the server [LW19;
YZJE23; WK23]. While this design enables clients to train different model architectures
without limitations, its disadvantage is the lack of a competitive model in the server.

Model size heterogeneity

The second category consists methods with partial architecture sharing. For example,
resource-restricted clients can learn a less complex model which is a smaller version of the
server’s model. In this case, both the server and client-side models are trained as part of the
federation [CKMT18; DDT21; LWW+22]. In the context of deep neural networks, the model
compression on the clients side can be achieved by training models with fewer [LWW+22]
or with simpler [CKMT18; DDT21; HLA+21; LSL+21; LGZX23] layers. Our work focuses
on heterogeneous FL methods in this category.

4.3.2 Membership inference attacks in FL
While FL was initially motivated by the desire to preserve client data, recent studies have
revealed that federated systems remain vulnerable to privacy attacks, specifically in the form
of membership attacks [GBX22; BRG+21; KD21; SHK+20; NHD+23]. To tackle this limi-
tation, several privacy-preserving approaches for FL have been proposed to date, including
local differential privacy [GBX22; BRG+21] and data augmentation [KD21; SHK+20]. In
our work, we focus on membership inference attacks and their implications on heterogeneous
FL. In MIAs, the attacker’s goal is to determine whether an individual data point was part of
the dataset used to train the target model. While MIAs expose less private information than
other attacks, such as memorization attacks, they are still of great concern as they constitute
a confidentiality violation [OV23]. Membership inference can also be used as a building block
for mounting extraction attacks for existing machine learning as a service systems [CLE+19].
Several types of MIAs have been proposed in the literature [JWK+21; SSM19]. In this work,
we focus on black-box attacks where the attacker does not have full access to the models but
is able to query them, which is a more realistic scenario than white-box attacks that assume
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full access to the models. We analyze the impact of three popular MIAs that use complemen-
tary strategies and hence offer a comprehensive evaluation of client privacy vulnerabilities
in heterogeneous FL settings. Namely, the Yeom [YGFJ18], LiRA [CCN+22], and tMIA
[LZBZ22] attacks. The Yeom attack is a simple, yet effective loss-based attack; LiRA is
a good representative of shadow model-based techniques; and tMIA is a state-of-the-art
knowledge distillation-based method to approximate the inspected model.
While it is known that the larger the complexity of a model, the higher its vulnerability

against MIAs [LWC+22; YGFJ18], as illustrated by figure 7 and its corresponding section
in the Appendix, we are not aware of any study of the impact on privacy of the model
integration strategy adopted by the server in a heterogeneous FL setting.

4.4 A taxonomy of heterogeneous FL methods
In section 2.3, we described the current field of heterogeneous FL methods. In table 3a), we
showed that methods can update the client model size each batch or each round dynamically
or keep them static. In this section, we further elaborate on table 3b), and we propose a
novel taxonomy of heterogenous FL methods which allows to both compare existing methods
and identify seven new methods.

4.4.1 A taxonomy of heterogeneous FL methods
Figure 8 illustrates the proposed taxonomy of heterogeneous FL methods, according to
three dimensions that characterize how the clients’ models are integrated into the server’s
model. In each dimension, we label the categories with a single letter. We combine the
letters to determine a method’s place in the taxonomy by three letters representing the
three dimensions. The figure highlights a method, OFM, that represents O (one group)
in the first dimension, F (fixed) channel sets at the initialization of the training, and M
(submatrix) policy for channel integration.

Client grouping The first dimension of the taxonomy refers to client grouping, clas-
sifying the methods in three classes: one group (O); several groups (G); and unique (U),
depending on the number of channel sets used to train the models in the clients with smaller
models than the server’s model. In one group, all the clients use the same set of channels.
In several groups, clients are clustered in groups such that clients in the same group use the
same set of channels (figure 8a) shows an example with 4 groups). Unique corresponds to
federations where every client has their set of channels selected individually, illustrated by
the rectangles with different colored patterns in figure 8a).

Dynamics The second dimension (figure 8b) characterizes the dynamics of the channel
selection approach and defines two types: fixed (F) methods when the channel sets are
defined at the beginning of the training, and resampled (S) methods when the channel sets
are selected in each training round, t1 ... tK . The figure illustrates the dynamics with 4 clients
and in three training rounds t1 to t3. The clients’ models are represented by rectangles with
different colored patterns which represent the selection of channels from the server’s model.
In the fixed case, the clients get a variation of the same channels from the server in every
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Figure 8. Proposed taxonomy of channel selection methods for heterogeneous FL architectures.
The server (S) and the clients (ci ∈ K) learn the same type of models (e.g. CNNs) but with
different numbers of units. The server selects which subset (channels in the case of a CNN) of its
model is used to train the clients’ models. We refer to this mechanism as client model integration.
The taxonomy considers three dimensions: a) The groups of clients learning from the same server
channels: one group (O), four groups (G), all unique clients (U); b) Dynamics in channel group
selection: fixed at the beginning of the training (F), sampled in each round (S); and c) Policy for
channel selection from the server’s model: according to a submatrix structure (M), randomly (R).
The top of the figure illustrates the taxonomy with one type of the proposed heterogeneous FL
methods, namely GFM : there are four groups of clients (G) indicated by different colors, which
use fixed channel sets (F) that are integrated in the server’s model as submatrices (M).

round of training (hence the patterns in the rectangles are the same in the different training
rounds), while when the channel sets are resampled, they get a new set of channels from the
server every round, and hence the patterns change in each training round ti.

Policy Finally, the third dimension (figure 9c) concerns the policy for channel integration
of the clients’ models in the server’s model and consists of two kinds: submatrix (M) methods
if the selected channels are groups of adjacent channels and random (R) methods if the
channels are selected randomly. In the Figure, with the submatrix policy the models from
each of the 4 clients are integrated in non-overlapping sections of the server’s matrix whereas
with the random policy different portions of the clients’ models are integrated in different
sections of the server’s model.
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4.4.2 Existing heterogenous FL algorithms
The proposed taxonomy enables us to characterize existing methods in heterogeneous FL.

FDropout

In FDropout [CKMT18], the clients learn a CNN with the same architecture but fewer
parameters (smaller weight matrices) than the server, and the server randomly drops a fixed
number of units from each client [SHK+14], mapping the sparse model to a dense, smaller
network by removing the dropped weights.
While the original formulation of FDropout used the same model size in all the clients,

an extended variation was proposed by [HLA+21] that allows clients to have different model
sizes and hence falls within the heterogenous FL definition used in this chapter. In this
variation, in each layer l of the server’s model, randomly selected cells, ai,j,l and their asso-
ciated rows i and columns j are dropped from the weight matrix. The size of the client’s
model weight matrix in each layer can be set by the number of dropped rows and columns:
|Drop(Nl, Nk,l)| = Nl −Nk,l and |Drop(Ml,Mk,l)| =Ml −Mk,l, where Drop(n,m) selects m
elements from n randomly. Therefore, for each layer l of the server’s model, in FDropout:

ai,j,l ∈ Ak : i /∈ Drop(Nl, Nk,l), j /∈ Drop(Ml,Mk,l). (10)

According to our taxonomy, FDropout corresponds to a USR method because each client
has a unique (U), random (R) set of channels that are resampled (S) in each training round.

HeteroFL

HeteroFL [DDT21] follows a similar idea as FDropout but with two key differences when
selecting the channels in the clients with smaller models than the server: 1) all the clients
learn from the same portion of the server’s model; and 2) instead of randomly dropping cells,
the clients always keep the top-left subset of the server’s weight matrix for each layer in the
network. Thus, in HeteroFL, the weight matrix Al

k of size Nk ×Mk in layer l and client
k corresponds to the top-left sub-matrix of the server’s weight matrix Al of size N ×M :

∀ai,jk ∈ Ak, a
i,j ∈ A : ai,jk = ai,j, i = 1..Nk, j = 1..Mk. (11)

According to our taxonomy, HeteroFL corresponds to an OFM method as there is only
one client group (O) with fixed channels (F) that correspond to a sub-matrix (M) of the
server’s weight matrix.

4.4.3 Newly proposed heterogeneous FL methods
In addition to HeteroFL and FDropout, our taxonomy enables us to propose seven new
methods for heterogeneous FL. In the following and for simplicity, we drop the superscript
l to denote the layer in the network.

1. GFM: In the GFM method, instead of selecting the top-left sub-matrix of the server’s
model (as in HeteroFL), the clients are randomly placed in n groups. In the fol-
lowing, we present the example where n = 4. Thus, the clients are assigned to one of
4 groups, O,P,Q,R. The client’s channels are selected based on their group’s policy,
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such that each cell from the original matrix is assigned to one cell in one of the four
group.
The matrix assigned to group O is the same as the HeteroFL sub-matrix: it always
selects the top-left cells of the server’s matrix. Clients in group R are assigned the
bottom-right cells. The sub-matrices assigned to clients in groups O and P alternate
between the bottom-left and the top-right cells. This is due to a restriction on how the
input-output channels need to be connected. The top-right sub-matrix corresponds
to selecting the second half of the input channels and the first half of the output
channels. Therefore, if in layer l the client selected the top-right sub-matrix, in the
next layer it has to select one of the left sub-matrices, as they are the ones with the
first half of the input channels. Note that this approach can be generalized to 9, 16,...
groups, depending on the number of clients and the desired model size reduction.
The cell assignment in the sub-matrices of each of the four groups is summarized in
equation (12) below.
The top portion of figure 9 illustrates the GFM method. As seen in the Figure, the
clients are grouped into four groups (G) with fixed channel sets (F) and integrating
their models as submatrices of the server’s model (M).

2. GFR: Compared to GFM, GFR differs in the set of channels inAO,AP ,AQ, andAR.
Instead of selecting the first or the last Nk and Mk channels, the output channels are
selected randomly, while the input channels match the output channels of the previous
layer.

a(i,j),l ∈



AO, if 1 ≤ i ≤ Nk, 1 ≤ j ≤Mk

AP , if 1 ≤ i ≤ Nk,M −Mk ≤ j ≤M, l odd,
or N −Nk ≤ i ≤ N, 1 ≤ j ≤Mk, l even

AQ, if N −Nk ≤ i ≤ N, 1 ≤ j ≤Mk, l odd,
or 1 ≤ i ≤ Nk,M −Mk ≤ j ≤M, l even

AR, if N −Nk ≤ i ≤ N,M −Mk ≤ j ≤M

(12)

3. GSR: GSR is similar to GFR but in this case the set of channels are drawn randomly
for each group in every round of training.

4. OSM: OSM generalizes HeteroFL by leveraging the channel sets {AO,AP ,AQ,AR}
introduced in GFM, but in each training round all clients are using one of the 4 groups.

5. OFR: OFR is a variation of HeteroFL where instead of the top-left subset of chan-
nels in the server’s weight matrix, the clients all get the same random set of channels
for every round of training.

6. OSR: In OSR, the set of channels are drawn randomly in every training round, but
all clients use the same set.

7. UFR: Finally, UFR selects K unique sets of channels from the server’s model which
are defined at the beginning of the training and clients have access to one of the sets
according to a new permutation every round. Therefore, in a federation with N clients,
the clients receive the parameters from the same set of channels every N rounds.
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We are interested in shedding light on the server accuracy and client accuracy-privacy trade-
off of these 9 methods to perform client model integration in FL with heterogeneous models.
Specifically, we focus on membership inference attacks or MIAs, as they represent a critical
privacy threat in federated learning. MIAs allow adversaries to determine whether a partic-
ular data point was part of a client’s training set by exploiting patterns in model updates
or predictions. Given the diversity in model sizes in heterogeneous FL, the susceptibility of
smaller, resource-constrained models to such attacks may differ from that of more complex
models. By analyzing the performance of MIAs across methods to achieve heterogeneity in
FL, we aim to understand the extent the model size in the client and the model integration
strategy impact both privacy and accuracy. This analysis is crucial for developing robust FL
frameworks that balance privacy guarantees and model performance in real-world settings
with heterogeneous devices.

4.5 Membership inference attacks in FL
In section 2.5, we defined privacy in machine learning as the level of protection against
membership inference attacks (MIAs). These attacks focus on reconstructing information
about the training data based on the available model (θ) by querying the (x, y) input-output
samples. We introduced three MIAs, Yeom, LiRA, and tMIA. In this section we further
elaborate on these three attacks and their relation to FL.
The selected attacks represent a distinct approaches to MIAs, ensuring a comprehensive

evaluation and coverage of a variety of methodologies: (1) the Yeom attack is a simple,
popular, loss-based and interpretable method; (2) LiRA is a good representative of shadow
model-based techniques, which leverage synthetic data and advanced likelihood estimation
methods to achieve high accuracy and scalability; and (3) tMIA is a state-of-the-art knowl-
edge distillation-based method. These are passive, black-box MIAs as the attacker does not
use infer the training process, and it does not use the architecture of the model to design
the attack.
Additionally, in federated learning, membership inference attacks can occur on the client

or the server sides. In this chapter, we focus on client attacks which occur when the at-
tacker targets the client’s model, (fk,θt

k), for client k = K in training round t = 1, . . . , T .
In a setting where all clients participate in the federation (stateful setting section 3.2.2),
the attacker can collect a set of s ≤ T client updates Θk = {θτ1

k , . . . ,θ
τs
k }, τi ∈ {1, .., T};

Specifically, we consider client-side attacks which take place on the last parameter update
from the client to the server θT

k where the attacker aims to identify instances of the client’s
dataset Dk for client k.

4.5.1 Yeom attack
The Yeom attack [YGFJ18] is a membership inference attack that relies on comparing
the prediction loss of a model on specific data instances to a pre-defined threshold. This
threshold distinguishes between instances that were likely part of the training dataset and
those that were not. The underlying assumption is that data points used in training tend to
have a lower loss than those that were not, because the model has learned to perform well
on training instances.
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Attack setup and threshold selection

The Yeom attack relies on two main components:

1. Global threshold (ν): The attacker sets a loss threshold ν, below which an instance
is considered likely to belong to the training dataset.

2. Attacker’s knowledge: To calculate this threshold, the attacker uses a subset of
data instances with known membership. This auxiliary set includes:

• DA +: Known training instances (member data).
• DA −: Known non-training instances (non-member data).

Using DA +, the attacker computes the threshold ν as the average loss on known member
instances:

ν =
1

|DA +|
∑

(x′,y′)∈DA+

`(y′, f(x′;θ))

where:

• f(x′;θ) is the model’s prediction for input x′,

• `(y′, f(x′;θ)) is the loss for true label y′ and prediction f(x′;θ).

Membership inference decision

Once the threshold ν is established, the attacker determines the membership status of a new
instance (x, y) by comparing its loss to ν:

AYeom(ŷ, (x, y)) =

{
1, if `(y, ŷ) < ν

0, otherwise.

Here, ŷ = f(x;θ) is the model’s predicted label for x, and loss(y, ŷ) is the computed loss for
this instance.

4.5.2 LiRA attack
We use the offline version of the LiRA (Likelihood Ratio Attack) attack of [CCN+22].

Attack setup: shadow models and auxiliary dataset

The attack operates in several steps:

1. Auxiliary dataset (Da): The attacker has access to an auxiliary dataset Da that is
similar to the data used to train the target model, although not necessarily identical.
This auxiliary data is used to simulate the behavior of the target model with respect
to training and non-training instances.

2. Shadow models (Msw): Using Da, the attacker trains multiple “shadow models”Msw

on different random subsets Dsw ⊂ Da. Each shadow model is designed to mimic the
target model’s behavior, especially in terms of confidence levels for data that was and
was not in the training set.
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3. Confidence scores: For each data instance (x, y), the attacker queries each shadow
model Msw to obtain a confidence score, typically the model’s probability prediction
for the true label y. We denote the confidence score of shadow model Msw on (x, y)
as φ(Msw(x), y).

Modeling confidence scores with a Gaussian distribution

For the data instance (x, y), the attacker gathers confidence scores from all shadow models,
yielding the set {φ(M1(x), y), φ(M2(x), y), . . . , φ(Mk(x), y)}. This set of scores is used to
model the distribution of confidence values for instances that are either ”in” or ”out” of the
training data.
The attacker then fits a Gaussian distribution N (µ, σ2) to these confidence scores, where µ

and σ2 represent the mean and variance of the scores. This Gaussian distribution captures
the typical confidence score behavior of shadow models, depending on whether (x, y) was in
the training data.

Calculating membership probability

Once the Gaussian distributionN (µ, σ2) is fitted, the attacker uses it to assess the probability
that a new confidence score φ(M(x), y) from the target model M is characteristic of the
training data.
The membership probability is calculated as:

1− Pr
[
N (µ, σ2) > φ(M(x), y)

]
This probability reflects the likelihood that φ(M(x), y) would be a typical score under the
Gaussian model. A higher probability suggests that (x, y) is likely part of the training data,
whereas a lower probability indicates non-membership.

Membership inference decision

To make a final membership inference decision, the LiRA attack applies a threshold ν to
determine whether the probability of membership exceeds a certain level as per the following
decision rule:

ALiRA(ŷ, (x, y),Da) =

{
1, if 1− Pr[N (µ, σ2) > φ(ŷ, y)] < ν

0, otherwise.
(13)

such that

• The attack outputs 1 (indicating membership) if the membership probability exceeds
the threshold 1− ν.

• Otherwise, it outputs 0 (indicating non-membership).
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4.5.3 Trajectory MIA attack
The tMIA attack [LZBZ22] determines the membership of a data point based on the loss
trajectory of the instance over multiple training epochs. The underlying hypothesis is that
the sequence of loss values (i.e., the loss trajectory) of a data point changes differently
for training data (members) and non-training data (non-members) as the model learns.
Therefore, tracking these loss values over epochs can reveal membership status.
In a black-box setting such as ours, only the final trained model is accessible, and therefore

the loss trajectory throughout training is not available. To address this, the tMIA attack
uses knowledge distillation to approximate the loss trajectory.

Attack setup: target and shadow models

The target model is denoted by M0
tg(f,Dg), where f is the model function and Dg is the

dataset used to train the model. The attack involves two key steps:

1. Shadow model training: A shadow model M0
sw(f,D+

sw) is trained on a subset
(D+

sw,D−
sw) ⊂ Da, where D+

sw contains samples similar to the training data and D−
sw

contains non-training samples.

2. Distillation Process: The attacker distills both the target and shadow models on a
distillation dataset Ddl ⊂ Da. During this process, snapshots of the models are saved
at each training epoch, resulting in a sequence of models:

{M0
tg,M

1
tg, . . . ,M

d
tg} and {M0

sw,M
1
sw, . . . ,M

d
sw}.

Loss trajectory calculation

For a data instance (x, y), its loss trajectory is captured by evaluating the loss of the data
point at each epoch during the distillation process. This yields a sequence of losses:

λ(x,y)∗ = {`0∗, `1∗, . . . , `d∗}(x,y)∗

where each `i∗ is the loss at epoch i for model M i
∗, and ∗ ∈ {tg, sw} represents either the

target or shadow model.

Training the attack model

The attack model MA is trained to recognize patterns in the loss trajectories that indicate
membership. To trainMA, the loss trajectories of data points in the shadow model, both from
the shadow training set D+

sw (members) and shadow non-training set D−
sw (non-members),

are used. Specifically, the training set for MA consists of:

{λ(x,y)sw | (x, y) ∈ D+
sw ∪ D−

sw}

where each λ(x,y)sw is the loss trajectory of (x, y) on the shadow model.
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Membership inference decision

During inference, the attack modelMA predicts the membership status of a new data instance
(x, y) by analyzing the loss trajectory from the target model’s distillation process λ(x,y)tg . The
attack decision rule is:

AtMIA(ŷ, (x, y),Da) =

{
1, if MA(λ

(x,y)
tg ) > ν

0, otherwise.
(14)

Here:

• MA(λ
(x,y)
tg ) is the output of the attack model on the loss trajectory λ(x,y)tg .

• ν is a threshold value; if the attack model’s output exceeds this threshold, the instance
is predicted as a member (1), otherwise, it is predicted as a non-member (0).

4.5.4 Performance metrics of MIAs

Three commonly used metrics to determine the performance of MIAs include:

• AUC (Area under the curve): This metric represents the area under the Receiver
Operating Characteristic (ROC) curve, which plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold settings. AUC ranges from
0.5 (random guessing) to 1.0 (perfect prediction). A higher AUC indicates better
discrimination between members and non-members in the dataset and hence better
performance of the MIA.

• Attack advantage: This measures how much better the attack model performs com-
pared to random guessing. It is calculated as double the difference between the attack
model’s accuracy and 0.5 (the accuracy of a random classifier). A higher attack advan-
tage indicates the attack is more effective at distinguishing members from non-members
than a random model.

• TPR@FPR 0.1: This is the True Positive Rate (or recall) when the False Posi-
tive Rate is fixed at 0.1 (10%). It reflects the proportion of actual members that are
correctly identified by the attack when only 10% of non-members are incorrectly clas-
sified as members. A higher TPR@FPR 0.1 indicates a more powerful attack with a
low tolerance for false positives.

4.6 Privacy-accuracy trade-off
Each of the heterogeneous FL methods is expected to provide a different privacy-accuracy
trade-off, depending on how the client model integration is performed on the server. We
formulate below three hypotheses that we empirically validate in our experiments.
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Frequency hypothesis (H1)

We hypothesize that heterogeneous FL methods where clients have access to the same set
of channels more frequently perform better in terms of client-level accuracy but have worse
client-level privacy. For example, in GFM the clients access the same set of channels ev-
ery four rounds. Thus, compared to the two state-of-the-art heterogeneous FL methods,
namely HeteroFL (same set of channels per client across rounds) and FDropout (ran-
dom selection of channels per client in each round), we expect this method to yield a client
privacy-performance trade-off between these two existing methods.
Based on this hypothesis, we expect:

• OSR, GSR, and USR (FDropout) to be the most resilient methods against MIAs
but provide the worst client accuracy as the clients receive the parameters from a new
set of channels in every round. Therefore, the same set is only repeated in every

(
N
Nk

)
rounds on average for client k with client channel size Nk and server channel size N .

• OFM (HeteroFL) and OFR to be the most vulnerable against MIAs but achieve
high client accuracies as the clients train using the parameters of the same set of
channels in every round (1 round).

Similarity between the M and R categories (H2)

In a CNN layer, as long as the selected input channels of layer l match the output channels
of layer l− 1, the differences between variations M and R should be small. They differ only
in the number of channels shared by client groups. We designed the sub-matrix category
(M) to minimize the channel overlap between groups. Thus, we expect the models in the M
and R categories to behave similarly regarding performance and privacy.

The differences in the privacy-accuracy trade-off between the methods decrease
as the number of large clients in the federation increases (H3)

The heterogeneous FL methods discussed in this chapter are relevant when the majority of
the clients learn smaller models than the server’s model. Note that in cases when all the
clients but one learn models of the same complexity as the server’s model, the UFR and
OFR methods become the same. Therefore, we expect the impact of the channel selection
strategies to be larger when the majority of clients in the federation learn smaller models
than the server’s model.
We perform a comparative analysis of the proposed methods and empirically validate our

hypotheses in experiments on commonly used vision datasets, as described next.

4.7 Methodology

4.7.1 Datasets
We perform experiments on two widely used image datasets: CIFAR-10 and CIFAR-100;
given that, our work lies at the intersection of MIA techniques and heterogeneous FL, and
to the best of our knowledge, these two datasets are the only common datasets in the
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(a) CIFAR-10 (b) CIFAR-100

Figure 9. Client accuracy vs privacy trade-off and server-side accuracy of the 9 heterogeneous FL
methods under study. Privacy attack performance (AUC) averaged over the 3 MIAs (Yeom, LiRA,
tMIA). All heterogeneous FL architectures consist of 2 clients with large models (100k parameters,
same size as the server’s model) and 8 clients with small models (30k parameters). For reference,
we report the performance of FedAvg30k and FedAvg100k with 10 small (30k parameters) and
10 large (100k parameters) clients, respectively. Heterogeneous FL methods with optimal client
accuracy-privacy trade-off would be on the top-left corner of the graph. Heterogeneous FL methods
with largest server-side accuracy are depicted at the top of the bar with gradient shading on the
right-hand side of the graphs. Marker highlights repeated channel frequency.

literature from both communities(FL: [MMR+17; DDT21; HLA+21] and MIA: [YGFJ18;
KD21]).

CIFAR-10 [Kri09] contains 60,000 images from 10 classes (50,000 images for training and
validation and 10,000 images for testing).

CIFAR-100 [Kri09] has the same number of training and testing images as CIFAR-10 but
with 100 classes and 500 training images per class.
We use a class-wise balanced, but client-wise weighted distribution. We generate a data

distribution using the Dirichlet distribution Dir(α) once, and apply the same split for each
class. This ensures that each client has the same number of images from each class while
they have different dataset sizes. The dataset size imbalance is controlled by the α ∈ (0,∞)
value: the larger the α, the closer the allocation of training data to the uniform distribution
and hence the closer to an IID scenario. Using α = 0.85 this distribution generates clients
with dataset sizes typically ranging from 1, 000 to 10, 000 samples. We apply random crop
and random flip augmentations.

4.7.2 Machine learning model
Given the nature of the data (images), we use a sequential CNN architecture, with con-
volutional, batch normalization, and fully connected layers with trainable weights follow-
ing [DDT21]. We control the model complexity by changing the number of channels in the
convolutional layers and the number of units in the final fully connected layer. In our ex-
periments, we increase the complexity by factors of 2: each increase in the level of model
complexity entails doubling the input and output channel sizes in each inner convolutional
layer and the number of units in the final fully connected layer.
The model in all our experiments is a Convolutional Neural Network, similar to the models
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reported in related work [DDT21]. The layers with weight matrices consist of 2D convo-
lutional layers with a (N,M,H,W ) 4-dimensional matrix, where the first two dimensions
N and M correspond to the output and input channels and the rest are the convolutional
kernels. From a heterogeneous FL perspective, N and M are the dimensions that change
when the clients in the federation learn models of different sizes than the server’s model
whereas H and W are the same as in the server. In the PyTorch implementation, the bias
of the convolutional layers has a separate (N) 1-dimensional matrix. When a subset of N l

k

output channels is selected for a client k and convolutional layer l, its bias shares the same
N l

k out of N l output channels.
After the convolutional layers in the model architecture, there are BatchNorm normaliza-

tion layers with (N) 1-dimensional weight matrices with bias. Note that the BatchNorm
layer l+ 2 after convolutional layer l has the same N l+2

k = N l
k channels selected. The Scaler

layer adapted from HeteroFL [DDT21] scales its input with respect to the model-agnostic
compression rate. For rk = Nk

N
= Mk

M
, the Scaler follows:

fScaler(x) =
1

rk
x. (15)

Finally, there is a linear layer lin with weight matrix (N,M) and bias with weight matrix
size (N). Each client k shares the same N lin

k output channels in this linear layer.
The complexity of the model is controlled with parameter u. Each input and output

dimension of the weight matrix is a multiple of u. The model complexity levels used in this
chapter –namely 30k, 100k, 400k, and 1.6M– correspond to u values of 8, 16, 32, and 64,
respectively. Figure 10 illustrates the model architecture for a generic u and an example
with u = 16.

Input-output channel dependency

In section 4.4.2, we present FDropout [CKMT18] and HeteroFL [DDT21] according to
their original descriptions, which suggest that the channels of a layer l can be dropped inde-
pendently from the previous and following channels. However, after extensive experiments,
we observed that the client models train significantly better if the selected output channels
of a convolutional layer are the same as the input channels of the following convolutional
layer. In the FDropout adaptation of [LGZX23] the same principle is adopted: layer l
only drops output channels randomly, while the selection of the input channels is inherited
from the previous convolutional layer. The pseudo-code in [CCGR22] suggests that their
implementation follows the original layer-independent dropout, and their results show that
FDropout performs badly compared to other techniques: while the Simple Ensemble Aver-
aging method reached the 70% accuracy of the baseline FedAvg on the FEMNIST dataset,
the presented implementation of FDropout only reached 60%. In table 6, we compare
FDropout (USR) and GFR with input and output channels dropped independently and
with layer-wise coupling with respect to the previous and following layer. The results show
that the client-side accuracy for the layer-wise methods outperforms their independent coun-
terpart by 16% for FDropout and 7% for GFR. Based on these results, we conclude that
the layer-wise dependency is necessary to achieve competitive results and follow this principle
in our other experiments.
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Figure 10. Model architecture and sizes of the weight matrices depending on the model complexity,
controlled by the parameter u. Layer names and constant parameter dimensions on the left, varying
dimensions on the right.

Table 6. Input-output channels selected independently and with respect to the previous layers in
the CNN. FDropout (USR) and GFR experiments on CIFAR-10 with 2 large clients out of 10
clients in total, repeated 3 times. Client-side performance is significantly better when the channel
selection is structured layer-wise compared to their independent counterparts. Privacy evaluated
with the Yeom attack.

Name Server Client average
Acc ↑ Adv↓ Acc↑ Adv↓

USR independent 75.44 ± 1.75 2.57 ± 1.62 23.56 ± 0.29 1.74 ± 0.44

USR layerwise 76.38 ± 1.36 2.45 ± 1.34 39.99 ± 1.11 2.32 ± 1.52

GFR indepentent 76.41 ± 1.73 2.87 ± 0.78 55.82 ± 1.61 3.00 ± 0.50

GFR layerwise 77.11 ± 1.52 3.34 ± 0.98 62.80 ± 1.43 3.20 ± 0.24
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Table 7. Correlations of the three performance attack metrics (AUC, Adv, TPR@FPR 0.1%) on
the three MIAs (Yeom, LiRA, tMIA) on the CIFAR-10 dataset. Note how AUC has the largest
correlation across the three MIAs. Hence, we use in the experiments the average AUC over the
three MIAs as the privacy performance metric.

Privacy Attack Metrics: AUC / Adv / TPR@FPR 0.1%
tMIA LiRA Yeom

tMIA 1.00 / 1.00 / 1.00 0.83 / 0.70 / 0.00 0.98 / 0.78 / 0.46
LiRA 0.83 / 0.70 / 0.00 1.00 / 1.00 / 1.00 0.85 / 0.68 / 0.02
Yeom 0.98 / 0.78 / 0.46 0.85 / 0.68 / 0.02 1.00 / 1.00 / 1.00

4.7.3 Experimental setup

In all experiments, we define a heterogeneous FL architecture with 10 clients which are
trained with the Adam optimizer, a learning rate of 0.001 for one local epoch, a batch size of
128, and 150 rounds of FL. Experiments are repeated 3 times and we report mean values and
standard deviation. The server learns a large model, which corresponds to a CNN network
with 100k parameters. The clients learn a model with either the same complexity as the
server’s model or one complexity level below with 30k parameters (small model). All models
are built in PyTorch [PGC+17] with the Flower federated framework [BTM+20]. FL clients
are simulated in parallel on 2 AMD EPYC 7643 48-Core CPUs with 252GB RAM.
We train the 9 heterogeneous FL methods in a FL architecture with 10 clients, of which

2, 5, or 8 clients learn small models and the rest learn models of the same complexity as the
server’s model. Clients with a smaller dataset size are selected first to learn smaller models.
We also train as baselines two FedAvg baselines, FedAvg30k and FedAvg100k, where the

server and the clients learn models with 30k and 100k parameters, respectively. Thus, we
train 29 different FL models for each data distribution.
While we do not perform experiments with heterogeneous FL architectures that include

more than two levels of model complexity, we expect our results to extrapolate to other
configurations in a similar way as reported in [DDT21].

Membership inference attacks

Each client is subject to the 3 previously described MIAs. For LiRA and tMIA, the auxiliary
dataset is drawn from the datasets of the rest of the clients Dk

a = {D1, ...,DK} \Dk. We use
the same shadow models to attack models from the same experiment. We train 16 shadow
models for LiRA and use 25 distillation epochs for tMIA.

Performance metrics

We report three performance metrics: (1) client-side and (2) server-side accuracies on the
test sets; and (3) the average AUC of the 3 MIAs. We select AUC because it is the metric
that exhibited the largest correlation across MIAs on the evaluation datasets. Table 7 depicts
the correlation of the three performance metrics (AUC, attack advantage and TPR@FPR
0.1) of the three MIAs (tMIA, LiRA, Yeom) on the CIFAR-10 dataset for illustration.
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Table 8. Pearson correlation coefficient of dataset size and attack advantage for different model
sizes in class-balanced heterogeneous data distribution.

# Model parameters 30k 100k 400k 1.6M
CIFAR-10 -0.62 -0.65 -0.57 -0.87
CIFAR-100 -0.54 -0.70 -0.85 -0.90
FEMNIST -0.71 -0.65 -0.63 -0.75

4.8 Results

4.8.1 Model size vs attack advantage
Table 8 shows the Pearson correlation coefficient between the client dataset sizes and their
vulnerability against client-side Yeom membership inference attacks. Numbers correspond
to running experiments 5 times in a federation with 10 clients. Clients with less than 400
data samples are excluded from the analysis, resulting in the exclusion of 3 clients in the 5
runs with the CIFAR-10 and CIFAR-100 datasets. All values in the table exceed the critical
value of non-significant correlation for the given sample size.

4.8.2 Privacy – performance trade-off
Figure 9 depicts the three performance measures of the study, namely client-side accuracy
(Y-axis), average attack AUC of the 3 MIAs (X-axis) and server-side accuracy (bar with
gradient shading), of the nine heterogeneous FL methods in a federation with 2 large clients
on the CIFAR-10 (a) and CIFAR-100 (b) datasets. The complete set of results can be found
in tables 24 and 25 in the Appendix.
The results corroborate our first hypothesis H1 related to the accuracy-privacy trade-off.

From a client perspective, methods GFM and GFR achieve similar accuracies as Het-
eroFL but with better privacy protection (0.5−1.0% AUC). Their overall accuracy-privacy
trade-off is similar to that of FedAvg30k yet they achieve significantly better server-side
accuracy (77.89% and 78.19% over 69.04% for CIFAR-10 and 43.05% and 43.17% over
34.01% for CIFAR-100). FDropout, and the GSR and OSR methods perform well in
terms of client privacy, but their client accuracy is significantly lower when compared to the
rest of the methods.
Supporting our H2 hypothesis, methods GFR and GFM, and methods OFR and OFM

yield similar results in all three measures on the two datasets, with OFM (HeteroFL)
and OFR on CIFAR-100 being the closest with differences of only 0.2%, 0.6%, and 0.02%
on the server accuracy, client accuracy, and attack AUC, respectively.
Interestingly, while the OSM method performs as expected on the client side, it outper-

forms every other FL method on its server-side accuracy, providing the best server accuracy
- client privacy trade-off of all the studied methods. We hypothesize that two factors con-
tribute to this result: 1) in category O, all clients train on the same channels in each round,
thus the global model does not “forget” the samples of clients not seen in the current round;
2) the training sees the same 4 sets of channels in every 4 rounds, allowing more information
to be stored than in only learning on one set (such as in OFM), but still keeping a repeated
structure compared to OSR. We leave to future work the investigation of the reasons behind
the excellent performance of OSM regarding server accuracy.
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Table 9. Absolute differences in performance between the best and worse performing methods in
federations with 2, 5, and 8 large clients. As the ratio of clients with the same model size as the
server increases, the differences in performance between the methods decreases corroborating our
third hypothesis.

CIFAR-10 CIFAR-100
Server Acc (2 clients) ∆3.09 (75.61-78.70) ∆3.82 (41.31-45.13)

Server Acc (5 clients) ∆0.56 (78.44-79.00) ∆1.13 (44.57-45.70)

Server Acc (8 clients) ∆0.72 (78.38-79.10) ∆1.69 (44.85-46.54)

Client Acc (2 clients) ∆37.65 (32.30-69.95) ∆22.18 (10.85-33.02)

Client Acc (5 clients) ∆20.61 (51.41-72.02) ∆11.88 (24.27-36.08)

Client Acc (8 clients) ∆6.63 (67.32-73.96) ∆3.25 (37.03-40.06)

Attack AUC (2 clients) ∆1.52 (50.78-52.30) ∆1.85 (51.56-53.41)

Attack AUC (5 clients) ∆0.87 (51.69-52.56) ∆1.32 (52.61-53.85)

Attack AUC (8 clients) ∆0.65 (52.40-53.06) ∆0.99 (52.91-53.90)

4.8.3 Impact of the number of clients with small model complexity
To evaluate hypothesis H3, we perform experiments with heterogeneous federations with 10
clients, of which 2, 5, or 8 clients learn models of the same model complexity as the server’s
model. Table 9 summarizes the difference in performance between the best and the worst
performing methods in each of these federations. Note how the difference in performance
between the best and worst performing models in a federation with 2 large clients vs a
federation with 8 large clients is 3x for the server-side accuracy and attack AUC, and over
6x for the client-side accuracy. These results support hypothesis H3.

4.8.4 Non-IID data
We study the impact of non-IID (non-independent and identically distributed) data using
the Federated EMNIST or FEMNIST [CDW+19] dataset, which is an image dataset of hand-
written characters. We select this dataset because it is common in both the MIA and FL lit-
erature: while the original MNIST dataset is frequently used to evaluate MIAs, [YGFJ18] its
federated version (FEMNIST) is commonly used to evaluate FL methods [YBR20; ANA+24].
It consists of 62 classes with a long-tail data distribution. In its federated version, the images
are distributed by the ID of the writer whose handwriting they are. Following the official
sub-sampling method, we select 20% of the data, keeping only writers with at least 300
samples and splitting into train-test datasets where the test dataset corresponds to images
by unseen writers. This results in approximately 165 writers in the train set. We distribute
the data among 10 clients following the standard practice in the literature [YBR20]. We do
not apply data augmentation on this dataset.
While the previously formulated hypotheses hold in the case of non-IID data on the client-

side, the server-side accuracy significantly drops when using heterogeneous FL methods:
2.2 points for FL with 2 large clients, and 0.9 points for 5 large clients. Furthermore, the
FedAvg100k baseline outperforms several of the studied methods regarding client privacy.
These results shed light on the limitations of the studied model integration methods in
heterogeneous FL and suggest that further research is needed to develop novel heterogeneous
FL methods that consider the spurious correlations within the clients [ZMMN21]. The
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Appendix contains more details about the experiments with non-IID data, including the
results of applying two popular approaches to mitigate the challenges associated with non-
IID data. The results, summarized in table 10, illustrate how most methods improve both
in accuracy and privacy protection, yet there is no single method that yields the best overall
performance, highlighting the importance of considering the model integration strategy in
heterogeneous FL settings.

Figure 11 depicts the performance of the 9 model-agnostic FL methods on the FEMNIST
dataset for a federation with 2 and 5 large (100k parameters) clients and the same experi-
mental setup as that described in the main chapter.

In the case of a federation with 2 large clients (figure 11(a)), we observe significant differ-
ences in the server’s performance when compared to the results obtained with the CIFAR-10
and CIFAR-100 datasets. Contrary to the CIFAR-x datasets, methods GFR, OSR, OFM,
and OFR underperform in terms of server-side accuracy when compared to the FedAvg30k
baseline, while methods OFR and OFM underperform in terms of privacy compared to the
FedAvg100k baseline. These results suggest that heterogeneous FL architectures where
some of the clients learn smaller models can lead to higher privacy risks, highlighting the
importance of analyzing the impact of model integration in those settings, as we do in this
chapter.

In a federation with 5 large clients (figure 11(b)), the server-side results are more similar to
those obtained on the CIFAR-x datasets: method OSM yields the best server-side accuracy
and all the methods outperform FedAvg30k. Interestingly and contrary to the behavior on
the CIFAR-x datasets, FDropout is competitive with the other methods on its server-side
accuracy, yet it yields poor client-side accuracy.

To mitigate the observed decrease in performance and privacy of the models in the case
of non-IID data, we have integrated two commonly used methods to tackle non-IIDness
in federated learning, namely FedProx [LSZ+20], and FedAvgM [HQB19]. FedProx
applies a proximal term in the client loss based on the client model’s distance from the
server model, which regularizes the client model updates, reducing the differences between
client updates and therefore improving client privacy. FedAvgM uses momentum on the
server side. It has been shown to be a simple yet effective method to improve performance
in non-IID settings. Table 10 summarizes the performance of all the heterogeneous FL
approaches with non-IID data after applying FedProx and FedAvgM. As seen in the
Table, there is an increase in the server and client accuracy and an improvement in client
privacy for most of the heterogeneous FL methods. In addition, other approaches that
have been proposed in the literature to mitigate the challenges of non-IID data could also be
used, including contrastive loss [LHS21; MSC+23], distillation [ZLF+24], and representation
learning [WXX+24]. We leave to future work a more in-depth exploration of such methods
as it is out of the main scope of this chapter.

In future work, we also plan to further study the behavior of model-agnostic FL methods
on non-IID data. We speculate that these differences in behavior might be due to spurious
correlations, which are nonexistent in the CIFAR-x datasets yet present in the FEMNIST
dataset, as the writer’s style might be correlated to certain classes and clients [ZMMN21].
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(a) Performance of the 9 model-agnostic FL methods
and baselines on the FEMNIST dataset with 2 large
(100k parameters) clients. The server-side accuracy
of several model-agnostic FL methods is inferior to
FedAvg30k’s accuracy. Contrary to the results ob-
tained on the CIFAR-x datasets, FDropout is the
model-agnostic FL method with the best server-side
accuracy.

(b) Performance of the 9 model-agnostic FL methods
and baselines on the FEMNIST with 5 large (100k pa-
rameters) and 5 small (30k parameters) clients. The
non-IID dataset requires more large clients in the fed-
eration to outperform the FedAvg30k baseline on
the server-side accuracy. The most privacy-sensitive
model-agnostic approaches, such as OFM (Het-
eroFL) yield worse client accuracy-privacy trade-off
than the FedAvg100k baseline in this non-IID set-
ting.

Figure 11. Performance of the 9 model-agnostic methods and baselines on the FEMNIST dataset
with 2 and 5 large (100k parameters) clients. These results suggest that more sophisticated model-
agnostic approaches that take into account spurious correlations beyond channel selection strategies
are needed.

Table 10. Performance and change in performance when FedProx or FedAvgM are applied to
the Federated Learning methods. Improvements are highlighted in bold and the best performing
results are underlined. As seen in the Table, most methods improve both in accuracy and privacy
protection yet there is no single method that yields the best performance. The table illustrates the
impact of the server model integration strategy in heterogeneous FL settings. As observed with IID
data, randomness in the channel selection yields better privacy protection and competitive server
accuracy at the expense of client accuracy.

FL Method
FedProx(µ = 0.01) FedAvgM (η = 0.9, β1 = 0.3)

↑ Server ↑ Client ↓ MIA (Yeom) ↑ Server ↑ Client ↓ MIA (Yeom)
Acc Acc AUC Acc Acc AUC

FedAvg100k 87.37 (0.17) 87.46 (0.28) 56.19 (0.21) 87.53 (0.33) 87.50 (0.32) 56.08 (0.10)
FedAvg30k 84.40 (0.30) 84.27 (0.07) 55.13 (-0.28) 84.22 (0.12) 84.20 (0.01) 54.91 (-0.51)

OFM (HeteroFL) 83.09 (-0.10) 82.82 (0.23) 56.68 (-0.06) 82.97 (-0.22) 82.61 (0.02) 56.60 (-0.14)
OFR 82.49 (-0.46) 83.08 (0.16) 56.92 (0.43) 83.08 (0.14) 82.59 (-0.33) 56.26 (-0.23)
OSM 84.28 (-0.12) 73.68 (0.50) 55.77 (-0.56) 84.33 (-0.07) 73.95 (0.77) 56.18 (-0.15)
GFM 85.40 (0.17) 81.82 (0.01) 55.89 (-0.29) 85.33 (0.09) 81.82 (0.02) 55.86 (-0.32)
GFR 83.92 (0.15) 81.59 (0.26) 55.89 (-0.21) 84.04 (0.28) 82.01 (0.69) 55.84 (-0.26)
UFR 84.67 (0.24) 79.58 (0.46) 55.45 (-0.09) 85.11 (0.69) 79.05 (-0.07) 55.55 (0.01)
OSR 83.98 (0.72) 32.07 (0.91) 54.90 (-0.24) 83.71 (0.46) 28.93 (-2.24) 55.52 (0.38)
GSR 84.79 (0.01) 44.75 (3.16) 54.96 (0.01) 84.39 (-0.39) 44.34 (2.75) 55.21 (0.26)

USR (FDropout) 85.62 (0.19) 46.90 (2.85) 54.98 (0.03) 85.29 (-0.14) 45.03 (0.98) 54.98 (0.02)
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4.9 Conclusion
In this chapter, we have proposed a novel taxonomy of heterogeneous FL methods that
not only frames existing approaches into the same family of methods, but also enables
the proposal of 7 new methods. In extensive empirical evaluations with the CIFAR-10
and CIFAR-100 datasets, we have studied the server-side accuracy and the client accuracy-
privacy trade-off of these approaches when subjected to three commonly used membership
inference attacks. Our results show that heterogeneous FL models can be used to mitigate the
vulnerability against such attacks. Moreover, the strategy adopted to integrate the clients’
models into the server’s model impacts both the accuracy and privacy of the federation. By
establishing a comprehensive taxonomy and introducing novel methodologies, we pave the
way for enhanced privacy of sensitive data within federated learning environments. In the
next chapter, we develop a more robust method to consider non-IID data in the clients in
FL settings, particularly when there might be spurious correlations present in the datasets.



Chapter 5

Data heterogeneity: FedDiverse, a
diversity-driven client selection

Figure 12. Content of this chapter in the scope of the thesis.

This chapter is based on the research presented in FedDiverse: Tackling Data Heterogeneity
in Federated Learning with Diversity-Driven Client Selection [NFN+25]. Modifications are
applied to improve the flow of the thesis.

5.1 Introduction
The findings of chapter 4 illustrate that the hypotheses based on centralized learning hold
in federated learning with IID data. However, for non-IID data, the unexpected behavior
suggests that there is an under-explored correlation between the data distribution, model
performance, and privacy. To address this, in this chapter, we investigate the concept of
spurious correlations – when the model learns misleading correlations from the training
data – in the federated setting. To mitigate the effects of spurious correlation in federated
learning, we draw inspiration from chapter 3 and propose a client selection method that
leverages diversity in the client data to build a more robust FL method.
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Figure 13. Visual representation of FedDiverse. CI, AI, and SC stand for Class Imbalance,
Attribute Imbalance, and Spurious Correlation in the clients’ data distributions. Observe the sta-
tistical data heterogeneity in the selected clients (turquoise and red). FedDiverse automatically
selects clients with a diversity of local statistics to learn a global model that is resilient to statistical
data heterogeneity.

In real-world FL scenarios, client data is often shaped by local factors such as differing
user behaviors [TYCY22], context-specific data collection environments [FMO20; YAE+18],
and socio-economic or cultural biases [BCM+18], resulting in statistical data heterogeneity,
where data across different clients is non-independent and identically distributed (non-IID)
and imbalanced. Statistical data heterogeneity hampers the generalization capabilities of
the server’s model across clients, slowing convergence and reducing performance [LHY+20;
CCC22].
Previous studies in FL have addressed statistical data heterogeneity from an algorithmic

perspective, providing convergence theorems, analyzing computational costs, and proposing
solutions to mitigate its effects [KKM+20; LHY+20; AZM+21; LSZ+20]. However, there is a
lack of fine-grained analyses of this problem. In this chapter, we address this gap and propose
decomposing the attribute-target label relationships to identify three types of statistical data
heterogeneity: (1) class imbalance (CI), when target labels have asymmetric distributions; (2)
attribute imbalance (AI), when attributes exhibit imbalanced distributions; and (3) spurious
correlations (SC), that emerge when the model learns misleading correlations between a non-
discriminative attribute, such as the background, and the target label (see section 2.4). These
three types of data heterogeneity pose a challenge both in centralized [YLCT20; YZKG23]
and federated [KMA+21; MBB24] learning.
Prior work in centralized machine learning has shown that CI, AI, and SC often arise

when data is limited or lacks sufficient diversity [YZC+24; GJM+20]. Thus, a typical
solution consists of using an additional and diverse yet unlabeled dataset –called “validation”,
“target” or “deployment” dataset– to do self-training (e.g. [LHC+21; CWKM20]) or to learn
a representation that is invariant to attributes (e.g. [TCK+21]).
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In FL, the diversity of client data can be leveraged to devise client selection methods
that mitigate the effects of CI, AI, and SC. By prioritizing clients with complementary data
distributions, the server’s model is exposed to diverse training patterns without accessing
raw data, enhancing generalization while preserving privacy.
In this chapter, we leverage this idea and address the challenge of statistical data hetero-

geneity in FL by proposing a novel client selection algorithm called FedDiverse that takes
advantage of diversity in client data distributions. We empirically evaluate FedDiverse
on 7 computer vision datasets that exhibit varying levels of CI, AI and SC, leading to the
following contributions:
(1) We propose a fine-grained analysis of statistical data heterogeneity in FL by means of

6 metrics;
(2) We introduce and share 7 FL datasets for binary and multiclass image classification

tasks that cover a broad range of statistical data heterogeneity;
(3) We present FedDiverse, illustrated in figure 13, a novel client selection method that

is designed to mitigate the impact of statistical data heterogeneity (CI, AI and SC) in FL
training while ensuring the privacy of clients and respecting the resource-constrained nature
of each client.

5.2 Related work

5.2.1 Data heterogeneity in federated learning
Statistical heterogeneity or non-IID data is a major concern in FL because it can hin-
der the training process, leading to poor generalization and slow and unstable conver-
gence [KMA+21]. Various methods have been proposed to address this issue [MBB24].
Some approaches add regularization terms to align local updates with the global model,
such as FedDyn [AZM+21] and FedProx [LSZ+20], while other methods aim to reduce
variance between client updates, such as SCAFFOLD [KKM+20], MOON [LHS21], and
FedFM [YNX+23]. In other approaches, the clients share additional information with the
server that reveals information about their statistical data heterogeneity. In pow-d [CWJ22],
clients share the average loss of the previous global model applied to their local data; in
IGPE [ZWL+24] they share averaged network embeddings; and in FedAF [WFK+24]
they share synthetic data. Finally, optimization-based server-side methods, such as Fe-
dAvgM [HQB19], MIME [KJK+20], and FedOpt [RCZ+20], employ adaptive learning
rates at the server to manage statistical diversity among clients.
However, none of these strategies explicitly address the challenge posed by spurious corre-

lations in client data, leaving room for improvement.

5.2.2 Spurious correlations in centralized ML
Spurious correlations can significantly hinder robustness and generalization in machine learn-
ing [YZC+24; GJM+20; NAN20]. Proposed solutions to this problem fall into two main
categories. The first category [SKHL20; ABGL19; YWL+22] unrealistically assumes that
spurious attributes are known or partially labeled, enabling models to reduce reliance on
these attributes by re-weighting samples or modifying training processes. These methods
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often require that data groups or environments be explicitly defined to minimize spurious
dependencies.
The second category does not assume prior knowledge of spurious attributes. Instead,

models are designed to automatically distinguish meaningful patterns from spurious ones,
often using techniques such as adversarial training [KKK+19; CYZ19] or counterfactual
data augmentation [KHL19; WZY+19]. For example, LfF trains two models concurrently:
a biased model to capture dataset biases and a debiased one trained on re-weighted samples
influenced by the biased model’s predictions [NCA+20]; and Just-Train-Twice initially
identifies “failure” cases where the model misclassifies, then increases the weights of these
cases in a second training phase to improve robustness against spurious features [LHC+21].
Even though spurious correlations have been sparsely studied in the FL literature, recent

research has begun to explore this challenge. To the best of our knowledge, [WZNK24] is
the first piece of work to tackle spurious correlations in FL by investigating personalization
such that models are tailored to the individual clients’ data. In contrast, we aim to learn a
single global model that remains robust to spurious correlations across all client distributions,
achieving strong generalization performance for all clients.

5.2.3 Client selection and weighting in FL
Client selection and client weighting are two primary strategies in FL to manage client contri-
butions during training and mitigate the challenges posed by heterogeneous data [NLQO22].
In client selection, which is especially relevant in resource-constrained settings, only a subset
of clients participates in each training round to reduce communication and resource de-
mands, improving training efficiency. Conversely, client weighting includes all clients in each
round but adjusts their influence on the global model by means of a weight, aiming to ac-
celerate convergence and performance [CGSY18; DLS21; CWJ22]. Both strategies support
fairness [ZFH21; CKMT18] and security [RMLH22; BEGS17], mitigating effects from clients
with unreliable or adversarial data.
Client selection or client weighting strategies address the challenge of statistical heterogene-

ity in FL by prioritizing or scaling the client contributions based on data quality and rele-
vance. In the client selection category, methods like FedPNS [WW22] and pow-d [CWJ22]
prioritize clients that are expected to contribute significantly to model accuracy, either
through gradient similarity to the average model gradient or by selecting clients whose data
produces high loss on the server’s model. Fed-CBS aims to reduce the class imbalance by
selecting the clients that will generate a more class-balanced grouped dataset [ZLT+23].
Client clustering is a common technique for selecting clients that represent groups that

share similar data distributions6. Server-side clustering methods typically consider the simi-
larity of the client gradient updates as a proxy of the similarity between their data distribu-
tions (e.g., FCCPS [XZLD22]) or their projection into a lower dimension for compression
(e.g. HCSFed [SSG+23]). In addition, clients can send metrics that describe the sta-
tistical heterogeneity of their local data, such as entropy in HiCS-FL [CV25]. Sharing
the full characteristics of the client data distribution with the server has also been investi-
gated [PLY23; WSK+22], yet it could be considered a privacy violation [CV25], and it is

6We exclude works referred as clustered federated learning (FL), where each client cluster trains a separate
model personalized to the data distribution of that cluster [GTL23; HSF+23], as our aim is to train one
robust model shared by all clients.
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typically unknown for spurious correlations. Finally, client weighting methods, such as CI-
MR [STW19], FMore [ZZWC20] and FedNova [WLL+20], reward clients with high-value
data or normalize updates to counter statistical heterogeneity.
Although most existing methods address non-IID data in FL through class imbalance,

we study other types of statistical heterogeneity, such as attribute imbalance and spurious
correlations, as described next.

5.3 A framework of data heterogeneity in FL
In section 2.4, we introduced the concept of spurious correlations, class imbalance, and
attribute imbalance in a dataset (x, y) ∈ D given predictor function f : X → Y , where X
consists of task-intrinsic (Xy) and attribute (Xa) features, where class label y ∈ Y and sample
x := (xy,xa) has a discriminative feature xy and an attribute feature xa, with attribute
label a ∈ A determined by xa

7. In this chapter, we propose a way to measure spurious
correlations, class imbalance, and attribute imbalance in centralized and federated datasets.

5.3.1 Data heterogeneity metrics
Centralized metrics. To measure the degree of statistical data heterogeneity in dataset
D, we adopt the metrics proposed in [YZKG23]:

∆CI(D) = 1−H(Y )/ log |Y| (16)
∆AI(D) = 1−H(A)/ log |A| (17)
∆SC(D) = 2I(Y ;A)/(H(Y ) +H(A)) (18)

where
H(Y ) = −

∑
y∈Y

Pr(y) log(Pr(y)) (19)

and
I(Y ;A) =

∑
y∈Y

∑
a∈A

Pr(y, a) log

(
Pr(y, a)

Pr(y) Pr(a)

)
(20)

are the entropy and mutual information with respect to the empirical distribution of the
dataset, respectively. Each metric is bounded within [0, 1].

Federated learning metrics. We present six metrics – three global and three local –
that characterize statistical data heterogeneity in FL, expanding the previously presented
metrics for centralized learning.

Global FL metrics. In the FL context, when the metrics in equations (16) to (18) are
computed on the union of the clients’ datasets, i.e.D =

⋃
k∈K Dk, they provide a global

understanding of the severity of CI, AI and SC, namely:

Global class imbalance: GCI = ∆CI(D) (21)
Global attribute imbalance: GAI = ∆AI(D) (22)
Global spurious correlation: GSC = ∆SC(D) (23)

7In this work, we assume that the labeling of the attribute is not available in the training set.
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Figure 14. Main steps of FedDiverse. First (a), there is a phase of standard federated model
pre-training. Second (b), the clients estimate their interaction matrices and, from them, their data
heterogeneity triplets, which they share with the server. Finally, (c), the server uses the received
triplets to perform client selection. Learnable parameters are marked in red, while fixed parameters
are in blue.

Client FL metrics. The global FL metrics fail to capture the heterogeneity present in the
datasets of individual clients. To this end, we propose three additional client metrics, where
the local values of CI, AI, and SC are averaged across all the K clients:

Client class imbalance: CCI =
1

K

∑
k∈K

∆CI(Dk) (24)

Client attribute imbalance: CAI =
1

K

∑
k∈K

∆AI(Dk) (25)

Client spurious correlation: CSC =
1

K

∑
k∈K

∆SC(Dk) (26)

In practice, data heterogeneity often consists of a mixture of CI, AI and SC in the data
distributions of different clients, as shown in figure 13 where Bulldog/Labrador is the target
label and Desert/Jungle as the non-discriminative attribute in the image classification task.

5.4 Client selection via FedDiverse
The proposed FedDiverse method consists of two components, illustrated in figure 14
and described next. First, an approach to estimate the statistical data heterogeneity in
the clients, characterized by their local CI, AI, and SC (section 5.4.1). Second, a client
selection strategy designed to include diverse clients in each round from the perspective of
their statistical data heterogeneity (section 5.4.2).

5.4.1 Estimation of the statistical data heterogeneity
Preliminaries. The global interaction matrix R represents the count of samples in a
global dataset D by class Y and attribute A. For each client k, a local interaction matrix Rk

captures its own non-normalized joint distribution of classes and attributes in their dataset
Dk, such that R =

∑
k∈K Rk. Although clients cannot access the full distribution of their

interaction matrices due to unknown attribute distributions, each can compute a marginal
interaction vector rk ∈ N|Y | : Rk

y =
∑

a∈A Rk
ya, where Rk

ya are the number of samples
belonging to class y ∈ Y and attribute a ∈ A in the client’s dataset Dk. Therefore, rk

y

contains the distribution of the classes in the dataset Dk.
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Table 11. Models in FedDiverse statistical data heterogeneity estimation

Model name Training data Inference
f Federated model

⋃
k∈K Dk The model trained in FL.

f̄k Biased model Dk Generating Gk and gk if |Y| = 2.

f̄ y
k One-vs-rest model ∀y ∈ Y {x, y′} : y′ =

{
1, if λ = y

0, otherwise
, {x, λ} ∈ Dk {x, y} in G̃k

y if f̄ y
k learns the sample.

ψ̂ Attribute classifier {x, ã}, ã =

{
1, if {x, y} ∈ G̃k

y

0, if {x, y} ∈ g̃k
y

, {x, y} ∈ Dk, y = ŷ Generates R̃k given “pivot class” ŷ

The interaction matrix reflects the precise, non-normalized distributions of classes and
attributes. In cases with strong spurious correlations, local models may rely on an attribute
a which is the most correlated with the class y instead of intrinsic class features. For each
client, the majority group for a class y, denoted as Gk

y, includes the samples where the
attribute a has the highest count in Rk, and the minority group, gk

y , includes samples where
a has the lowest count. By aggregating these for each class, we define the majority group for
client k as Gk and the minority group as gk. Because clients do not fully know the attribute
function, they estimate these groups.
Finally, under the assumption that there are two attributes (|A| = 2), the attribute set

can be defined as A = {a0, a1}. This structure allows clients to infer the minority group
attributes for a class y once they know the majority group attribute. Note that most datasets
addressing SC or AI problems typically contain only two attributes (see table 2 in [YZKG23]).

Estimation of the interaction matrices. Each client k approximates Rk as R̃k and
uses this estimated matrix to compute its data heterogeneity triplet (DHT)8. To preserve
privacy, the clients only share the triplet with the server, which uses these triplets to select
clients, as explained in section 5.4.2

∆̃k = [∆CI(R̃
k),∆AI(R̃

k),∆SC(R̃
k)]>. (27)

In the following, we outline the three-step method adopted by the clients to estimate their
interaction matrices R̃k and hence their data heterogeneity triplets ∆̃k. Note that this
estimation is only performed once at the beginning of the FL training process. Table 11
summarizes the models trained in this pipeline.

1. Pre-training: A global pre-training phase is carried out for a small number of rounds
T0 using the FedAvg algorithm, resulting in the global parameters θT0 .

2. Learning a biased model: After pre-training, each client receives θT0 and overfits
a local model called a biased model f̄k to its own data using the generalized cross-entropy
loss function `GCE [ZS18]. This loss function encourages the model to rely more heavily
on easy-to-learn patterns, which are often associated with spurious correlations [NCA+20].
As a result, each client can distinguish between a majority group Gk (where the majority
of correctly predicted samples will belong) and a minority group gk (where the incorrectly
predicted samples will mainly belong). The predicted majority and minority groups for class
y are denoted by G̃k

y and g̃k
y , ∀y ∈ Y , respectively. Given the nature of the `GCE loss, for

|Y| > 2, we train one-vs-rest binary classifiers f̄ y
k for each y ∈ Y to determine G̃k

y from the
correctly predicted samples.

8The metrics in equations (16) to (18) can be equivalently calculated using the interaction matrix, as it
fully describes the non-normalized joint distribution of classes and attributes.
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3. Attribute classifier: Using the biased model, clients label samples in the majority
and minority groups, even though they lack information about the exact attribute labels.
They identify a “pivot class” which has the smallest difference in sample size between the
predicted majority and minority groups, i.e. ŷ = argminy∈Y

∣∣∣∣∣∣G̃k
y

∣∣∣− ∣∣g̃k
y

∣∣∣∣∣. This class forms a
new dataset D̂k, which contains all the samples in Dk whose class is ŷ. Each client then trains
an attribute classifier ψ̂ locally on D̂k using cross-entropy loss to predict the attribute labels.
This classifier yields an approximate interaction matrix R̃k by predicting the attributes
according to the attribute labels in D̂k. Finally, each client computes their approximate
DHT ∆̃k and sends it to the server S.
The server collects all the triplets sent by the clients in the approximate data heterogeneity

matrix ∆̃ ∈ [0, 1]3×K where each column corresponds to one client k and each row corresponds
to the CI, AI, and SC components of the clients’ ∆̃k.
Note that the final values of the scores in ∆̃k are the same independently of the specific

labeling choice for the D̂k dataset, i.e.clients could equivalently assign the attribute label 1 to
the majority group samples and 0 to the minority group samples. Moreover, sharing the ∆̃k

does not disclose private information from the clients and only incurs negligible additional
communication costs. Thus, this approach is suitable for resource-constrained scenarios.

Generalization for multiclass problems

In this section, we further discuss the generalization of the interaction matrix predictor
for multiclass problems. Following [NCA+20], we train a biased classifier to identify the
strongest correlation with a binary attribute present in the dataset. They used the general-
ized cross-entropy loss `CE, introduced in [ZS18] as:

`GCE(Pr(x;θ), y) =
1− pPry(x;θ)

q

q
, (28)

where, for limq→0
1−Prq

q
= − log p we get the standard binary cross-entropy

`BCE(Pr(x;θ), y) = −(y log Pr(x;θ) + (1− y) log(1− Pr(x;θ))). (29)

[NCA+20] successfully used `GCE to amplify the bias for binary classification problems.
However, for multiclass classification, categorical cross-entropy (`CCE) is used instead of
`BCE. `CCE is given by equation (30), where C is the set of positive classes for the sample.
Instead of generalizing the categorical cross-entropy `CCE, similar to `BCE being generalized
with `GCE by [NCA+20], we chose to keep the biased classifier binary and leverage the
demonstrated bias-amplifying ability of `GCE.

`CCE(Pr(x;θ), y) =
1

|M |
∑
y∈C

− log

(
ePry(x,θ)∑
j∈Y e

Prj(x,θ)

)
, (30)

This means that for the biased classifier instead of using one multiclass classification, we
train |Y | binary classification models (f̄ b

k) such that for the b ∈ Y selected class

y∗ =

{
1, if y = b

0, otherwise
(31)
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We construct the G̃k and g̃k class-by-class: if the binary classifier f̄ b
k classified the sample

from class b correctly, it counts for the majority (G̃), otherwise the minority (g̃).

5.4.2 Client selection
The rationale of FedDiverse is to sample clients with different types of statistical data
heterogeneity (CI, AI, and SC) in each round, leveraging it to achieve better generalization
and robustness to real-world shifts [GTL23; ZLT+23; PLY23; HSF+23].

FedDiverse’s client selection is achieved by leveraging the information in the triplet ∆̃k

received from each client and sampling clients to ensure diversity in the three dimensions of
the triplets, i.e., selecting clients whose datasets exhibit a variety of CI, AI, and SC. The
client selection consists of the following three steps.

1. Probabilistic selection (SC): The first criterion for selecting a client is based on
the presence of spurious correlations. The probability distribution pSC over all clients,
based on the SC dimension of the data heterogeneity triplet (DHT) ∆̃k is given by: pSC =

∆̃3∥∥∥∆̃3

∥∥∥
1

, pSC ∈ [0, 1]K , where ∆̃3 is a vector composed of the SC values of all clients. The

probability of selecting each client is proportional to its corresponding value in pSC.
2. Complementary selection (AI or CI): After selecting a client based on SC, the

next step ensures that the next selected client exhibits complementary data heterogeneity.
To do so, the server computes the row-normalized matrix ∆̃, where ∆̃

k

i =
∆̃k

i∑3
i=1 ∆̃

k
i

, ∀i ∈
{1, 2, 3}, ∀k ∈ K. Using ∆̃, the server selects the client whose normalized triplet is the least
aligned (i.e. has the smallest dot product) with the normalized triplet of the already selected
client. Formally, this is computed as: kc = argmink∈K\{kp}

〈
∆̃

kp
, ∆̃

k
〉
where kp denotes the

already selected client and 〈·, ·〉 represents the dot product.
3. Orthogonal selection (CI or AI): The next client kr is chosen to complement the

heterogeneity profile of the data of the clients already selected. To achieve this, the server
selects the client whose DHT aligns the most with the vector perpendicular to the DHTs of
the two previously selected clients (which represent SC and either CI or AI). Formally, this
is computed as: kr = argmaxk∈K\{kp,kc}

〈
∆̃

kp × ∆̃
kc
, ∆̃

k
〉
where (· × ·) is the cross product,

ensuring that the selected client exhibits heterogeneity in the remaining dimension.
This client selection approach leverages all three dimensions of the DHT by selecting clients

with different types of data heterogeneity. The server repeats the steps above iteratively
until the desired number of clients has been selected, excluding clients already chosen in
the current round. To enhance variability, the order in which dimensions (SC, CI, AI) are
prioritized is rotated every three clients.
As illustrated in the experimental section, FedDiverse’s client selection can be applied

in conjunction with any FL optimization approach.

5.5 Experiments

5.5.1 Datasets
We perform the experimental evaluation taking as a basis three computer vision datasets
that are commonly used for benchmarking algorithms in the presence of statistical data
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Figure 15. Global and client statistical data heterogeneity metrics of each of the proposed datasets.
Note how each dataset has different values of class imbalance, attribute imbalance and spurious
correlations both globally and in the clients.

heterogeneity. From these three base datasets, we create 7 different datasets that cover
a wide variety of CI, AI, and SC both globally and in the clients, as explained next and
reflected in figure 15.

WaterBirds The WaterBirds dataset [WBW+11] is an image classification dataset with
two classes (waterbirds and landbirds), and two background attributes (water and land). In
the training set, there is a spurious correlation where waterbirds are more often found on
water backgrounds, and landbirds are more often seen on land backgrounds. We follow the
original train/test split and distribute the training data over 30 clients as follows: 3 clients
predominantly have CI; 2 clients have mostly AI; and the rest of the clients are impacted
largely by the same SC as the global dataset.

Spawrious The Spawrious dataset [LDKS23] consists of 4 dog breeds (target labels y) on
6 backgrounds (attributes a) groups generated with Stable Diffusion v1.4 [RBL+22]. There
are 6,336 images for each (y, a) pair, making it the largest vision dataset where the level of
spurious correlation is adjustable [YZC+24]. We save 10% of the data to create a balanced
test set and use the remaining data to generate 5 federated datasets with various levels of
statistical data heterogeneity. We identify and use the 2 hardest background groups (namely
beach and snow) together with 2 (labrador and dachshund) or 4 (labrador, dachshund, bulldog,
and corgi) dog breed classes.
While the WaterBirds dataset contains CI, AI and SC (see figure 15), we create 5 Spawrious

datasets with different data distributions to investigate the impact of CI, AI, and SC indi-
vidually:
First, we create 3 datasets where only one type of data heterogeneity is present globally:

spurious correlation in SpawriousGSC ; class imbalance in SpawriousGCI ; and attribute imbal-
ance in SpawriousGAI . Second, we create Spawrious4 which contains high levels of spurious
correlation and 4 classes. Third, we create SpawriousGCI-100 with class imbalance and 100
clients.

CMNIST The CMNIST dataset [ABGL19] is generated based on the binarized MNIST
dataset, with labels y = 0 for digits less than five and y = 1 otherwise. The attribute is
given by the foreground color, A = {red, green}. We use the same data distribution as for
SpawriousGSC with 2 classes. Hence, in this dataset, there is a high level of global and client
spurious correlations.
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5.5.2 Data distributions
In this section, we include additional details on the proposed FL datasets. To construct
each dataset, we first define the global interaction matrix (given for WaterBirds) such that a
centralized ERM training has at least 3.2% drop between worst group and average accuracy.
This ensures that the statistical data heterogeneity will have an impact on the training.
Table 12 summarizes the results on the centralized version of the datasets.
In table 13, we show the data distribution between clients. Each cell of the table shows

a type of client: m × Rk,∆k, where m is the number of clients of that type, Rk is the
interaction matrix of that type of client and ∆k is the data heterogeneity triplet (DHT)
of that type. Note that the different datasets are designed for federations with different
numbers of clients such that the overall imbalance in the dataset size among clients remains
small.

5.5.3 Experimental setup
We simulate a federated learning scenario with a total of 24 to 100 clients depending on the
dataset 9 on a machine with 3 Nvidia A100-80G GPUs using both the Flower [BTM+20] and
PyTorch [PGM+19] frameworks. Our code is available at https://github.com/Erosinho13/
SpuriousFL.
The server and the clients trained a MobileNet v2 [How17] model, where batch normaliza-

tion layers were replaced with group normalization layers and initial weights were pre-trained
on Imagenet. We applied the categorical crossentropy loss function with 0.001 learning rate
and a batch size of 28. Unless otherwise noted, we used T = 200 rounds of federated train-
ing with equally weighted clients. In experiments without client selection, all clients (24
to 100) participate in the federation in every round. In the cases where client selection is
performed, the server selects 9 clients to participate in the federation in each round, except
for SpawriousGCI-100 where 12 clients are selected.
We performed all experiments on the previously described datasets. We report worst-group

accuracy [SKHL20] and its standard deviation, defined as

min
(y,a)∈Y×A

E[1{y = f(x;θ)} | Y = y, A = a] (32)

over 3 runs using a balanced global test dataset.

5.5.4 Baselines
We compare FedDiverse’s client selection strategy with 6 baselines, described below. All
the methods are implemented using server-side momentum FedAvgM [HQB19].

1. Uniform random selection, where clients are randomly selected according to a uniform
distribution.

2. Round robin selection, where the server keeps track of how many times Rk a client k
has been selected such that the client cannot participate again while ∃j 6= k,Rj < Rk.

9The federations with the SpawriousGSC, SpawriousGCI and CMNISTGSC datasets have 24 clients;
SpawriousGAI and Spawrious4 have 25 clients; WaterBirdsdist has 30 clients; and SpawriousGCI-100 has
100 clients.

https://github.com/Erosinho13/SpuriousFL
https://github.com/Erosinho13/SpuriousFL
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Table 12. Details of the global data distributions of the datasets. Performance measured by
training MobileNetV2 for 10 epochs with SGD

Dataset (1) SpawriousGSC, SpawriousGCI SpawriousGAI WaterBirdsdist Spawrious4(2) CMNISTGSC

Interaction matrix (R)
[
1760 640
640 1760

] [
1760 1760
640 640

] [
2000 500
2000 100

] [
3498 184
56 1057

] 
2000 200
2000 200
200 2000
200 2000


Average accuracy (%) (1) 93.15, (2) 96.35 92.92 93.9 82.37 93.07

Worst group accuracy(%) (1) 87.82, (2) 93.15 87.62 89.09 55.09 85.88

Class imbalance (CI) 0 0.16 0.01 0.22 0
Attribute imbalance (AI) 0 0 0.44 0.18 0
Spurious correlation (SC) 0.16 0 0.05 0.67 0.37

Table 13. Client interaction matrices and ground-truth triplets for the proposed FL data distri-
butions. Each cell of the table contains a client interaction matrix in the middle, the number of
clients with that matrix on the left, and the CI, AI, and SC values of the matrix on the right.

SpawriousGSC,
∆

CI
AI
SC

SpawriousGCI ∆
CI
AI
SC

SpawriousGAI ∆
CI
AI
SC

WaterBirdsdist ∆
CI
AI
SC

Spawrious4 ∆
CI
AI
SC

SpawriousGCI-100 ∆
CI
AI
SCCMNISTGSC

2×
[
90 90
10 10

]
15×

[
90 90
10 10

]
1×

[
120 5
20 10

]
1×

[
23 23
10 110

]
2×

20 20
20 20
5 5
5 5

 64×
[
68 68
10 10

]
0.53 0.53 0.29 0.15 0.14 0.45
0.00 0.00 0.54 0.28 0.00 0.00
0.00 0.00 0.15 0.18 0.00 0.00

2×
[
10 10
90 90

]
1×

[
10 10
90 90

]
1×

[
120 40
5 10

]
1×

[
110 23
10 23

]
2×

 5 5
5 5
20 20
20 20

 4×
[
10 10
68 68

]
0.53 0.53 0.58 0.28 0.14 0.45
0.00 0.00 0.14 0.15 0.00 0.00
0.00 0.00 0.07 0.18 0.00 0.00

2×
[
90 10
90 10

]
2×

[
90 10
90 10

]
2×

[
170 5
5 5

]
1×

[
89 39
1 29

]
2×

20 5
20 5
20 5
20 5

 8×
[
68 10
68 10

]
0.00 0.00 0.70 0.30 0.00 0.00
0.53 0.53 0.70 0.01 0.28 0.45
0.00 0.00 0.24 0.27 0.00 0.00

2×
[
10 90
10 90

]
2×

[
10 90
10 90

]
2×

[
5 5

170 5

]
1×

[
29 39
1 89

]
2×

5 20
5 20
5 20
5 20

 8×
[
10 68
10 68

]
0.00 0.00 0.70 0.01 0.00 0.00
0.53 0.53 0.70 0.30 0.28 0.45
0.00 0.00 0.24 0.27 0.00 0.00

15×
[
90 10
10 90

]
2×

[
90 10
10 90

]
2×

[
10 30
120 10

]
1×

[
81 35
9 31

]
1×

 5 20
5 20
20 5
20 5

 8×
[
68 10
10 68

]
0.00 0.00 0.21 0.18 0.00 0.00
0.00 0.00 0.21 0.02 0.00 0.00
0.53 0.53 0.38 0.14 0.19 0.45

1×
[
10 90
90 10

]
2×

[
10 90
90 10

]
2×

[
80 80
20 2

]
9×

[
126 1
1 31

]
7×

119 5
119 5
5 119
5 119

 8×
[
10 68
68 10

]
0.00 0.00 0.47 0.28 0.00 0.00
0.00 0.00 0.01 0.28 0.00 0.00
0.53 0.53 0.08 0.87 0.50 0.45

14×
[
80 15
90 2

]
16×

[
127 1
1 31

]
9×

118 5
118 5
5 118
5 118

0.00 0.28 0.00
0.56 0.28 0.00
0.06 0.87 0.50

1×
[
110 5
85 8

]
0.01
0.66
0.01
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3. FedNova [WLL+20], a client weighting approach by means of importance weighting.
The parameter aggregation is given by θt+1 = θt − τeff

∑
k

|Dk|
|D| · β∇

t+1
k , where β is the same

momentum as in FedAvgM and τeff is the effective iteration step and it is computed from
the client’s steps.

4. pow-d [CWJ22], a loss-based selection method. First, the server S selects κbr : κ <
κbr < K clients randomly to broadcast the model parameters θt. All k ∈ Sκbr

clients compute
`(θt,Dk) and report it back to the server. Then, the server sorts the clients such that for
i, j ∈ {1, . . . , K}, i < j → `(θt,Di) < `(θt,Dj) and selects the first κ clients to participate
in the computation of θt+1.

5. FedPNS [WW22] identifies clients that negatively impact the aggregated gradient
change by comparing a client’s gradient change ∇t+1

k with the overall gradient change ex-
cluding that client, ∇t+1−∇t+1

k . If a client slows down the aggregated gradient, as indicated
by 〈∇t+1, (∇t+1 −∇t+1

k )〉, the client is flagged. Flagged clients are less likely to be selected
in subsequent rounds, while non-flagged clients and those not sampled in round t are more
likely to be selected.

6. HCSFed [SSG+23] clusters the clients based on the compressed gradients after the first
round of training. We use 3 clusters and randomly select clients from each cluster.

5.5.5 Communication and computation overhead
The baselines have varying levels of communication and computation overhead reported in
table 14. FedNova performs client weighting instead of selection, hence, all the clients
participate in the federation in each round. While pow-d performs client selection, the
server needs `(θt,Dk) from all clients to determine which clients to select in each round.
FedPNS requires no additional work from the clients, but the server calculates the sim-
ilarity between the client gradient updates in every round, which can result in significant
overhead for complex models and large number of clients. HCSFed addresses this issue by
compressing the model gradients and organizing the clients into clusters after the first train-
ing round and minimizing the overhead for subsequent rounds. Uniform random, Round
robin and FedDiverse are the only three client selection methods where only the par-
ticipating clients perform computations and communicate with the server in each round.
FedDiverse’s additional communication overhead is limited to just 3 scalar values per
client while the client-side computational overhead occurs only in a single training round.
The only recurring overhead is the server-side selection, which involves sorting clients based
on their DHT values.

5.5.6 Results
Table 15 depicts the worst group accuracies for FedDiverse and all the baselines on the
7 datasets. Note how client selection with FedDiverse is the only method that yields
competitive performance across all datasets.

5.5.7 Benchmarking FedDiverse with FL methods
We evaluate FedDiverse’s ability to improve the robustness of existing FL optimization
algorithms when combined with them. We aim to (1) evaluate the ability of FedDiverse’s
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Table 14. Communication and computation overhead for FedDiverse and the baselines where
K = 24..100, r = 10−5, |θ| = 2.23 · 106, nk = 102..103

Method Frequency Communication Computation Overhead
Overhead Client Server (∀t)

FedDiverse t = 1 3 ∀k ∈ K : |Y |O(nk|θ|) O(K)
Round Robin 0 0 0 O(1)

FedNova ∀t 3 + ∀k /∈ K : θt
k O(1) + ∀k /∈ K : O(nk|θ|) O(K)

pow-d ∀t 1 + ∀k /∈ K : θk ∀k /∈ K : O(nk|θ|) O(K logK)
FedPNS 0 0 0 O(K2|θ|2)

HCSFed t = 1 rθk r|θ|2 t = 1 : O(K · r|θ|)
t 6= 1 : O(K)

Table 15. Worst group accuracies (mean and std) over three experiments of FedDiverse and the
baselines in a federation with 24 to 100 clients, with 9 clients selected every round, and FedAvgM
as the FL optimization algorithm. The best-performing method is highlighted with bold, and the
second best is underlined. (*): 12 clients selected from 100. (**): Not scalable due to excessive
computational cost.

Client Selection
algorithm

Dataset
SpawriousGSC SpawriousGCI SpawriousGAI WaterBirdsdist Spawrious4 CMNISTGSC SpawriousGCI-100*

FedDiverse 88.01 ± 0.96 89.91 ± 1.91 87.28 ± 1.61 54.10 ± 2.03 86.06 ± 0.58 94.01 ± 0.98 91.22 ± 1.61

Uniform random 86.27 ± 1.12 87.59 ± 2.00 85.86 ± 2.56 42.42 ± 0.59 84.02 ± 0.63 92.00 ± 1.61 86.96 ± 1.28

Round robin 87.12 ± 0.87 87.64 ± 0.90 86.17 ± 2.65 41.23 ± 2.18 83.54 ± 1.83 93.51 ± 0.49 85.54 ± 0.40

FedNova 87.49 ± 0.73 88.52 ± 1.49 87.22 ± 0.47 42.83 ± 0.71 84.65 ± 0.64 93.23 ± 0.34 87.33 ± 0.18

pow-d 89.12 ± 0.32 89.01 ± 1.18 86.91 ± 1.52 56.75 ± 2.49 83.54 ± 2.01 92.85 ± 0.47 89.85 ± 1.00

FedPNS 85.75 ± 1.34 85.02 ± 9.12 82.22 ± 6.94 48.75 ± 12.14 84.35 ± 1.45 91.49 ± 1.42 N/A**
HCSFed 86.80 ± 0.86 87.17 ± 0.27 85.96 ± 2.70 41.66 ± 1.80 85.59 ± 0.66 91.45 ± 1.11 85.49 ± 0.78

Table 16. Worst group accuracies (mean and std) over three experiments of FedDiverse com-
bined with four FL optimization methods on the proposed datasets vs the default random selection.
The best-performing client selection method is highlighted in bold and the best-performing com-
bination is underlined. Note how all the FL optimization algorithms improve their performance
when doing client selection with FedDiverse vs random selection across all datasets.

FL algorithm
SpawriousGSC SpawriousGCI SpawriousGAI WaterBirdsdist Spawrious4 CMNISTGSC

Random FedDiverse Random FedDiverse Random FedDiverse Random FedDiverse Random FedDiverse Random FedDiverse

FedAvg 85.09 ± 1.00 85.90 ± 1.62 85.65 ± 3.85 89.43 ± 0.63 80.49 ± 0.52 84.33 ± 1.51 31.72 ± 3.05 46.47 ± 1.31 81.07 ± 1.29 83.86 ± 1.20 87.58 ± 2.38 91.01 ± 0.58

FedAvgM 86.27 ± 1.12 88.01 ± 0.96 87.59 ± 2.00 89.91 ± 1.91 85.86 ± 2.56 87.28 ± 1.61 42.42 ± 0.59 54.10 ± 2.03 84.02 ± 0.63 86.06 ± 0.58 92.00 ± 1.61 94.01 ± 0.98

FedProx 84.43 ± 1.91 86.33 ± 1.49 82.91 ± 4.89 87.30 ± 3.01 81.39 ± 2.12 83.81 ± 2.46 31.57 ± 2.87 43.51 ± 0.70 80.44 ± 1.55 83.64 ± 0.74 91.36 ± 0.95 91.49 ± 1.86

FedAvgM + FedProx 85.41 ± 1.67 87.85 ± 1.26 88.38 ± 1.42 90.48 ± 1.61 85.65 ± 3.76 85.17 ± 1.79 44.29 ± 1.26 53.84 ± 0.90 82.97 ± 0.69 86.12 ± 0.97 92.42 ± 0.71 93.24 ± 0.38
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client selection method to improve performance across a variety of datasets and FL opti-
mization algorithms; and (2) shed light on which method yields the best performance. The
algorithms benchmarked in this section are:

1. FedAvg [MMR+17], which serves as the baseline FL method where in each round the
global model is replaced by the average of the client models.

2. FedAvgM [HQB19], which includes server-level momentum, inspired by the momen-
tum algorithm [Nes13]. It is designed to improve non-IID convergence. The momentum
parameter is set to β = 0.95.

3. FedProx [LSZ+20], where the client loss contains a proximal term derived from the
difference between server and client weights to stabilize the convergence:

`prox(fk(x;θk), y) = `(fk(x;θk), y) +
µ

2
||θ − θk||2 (33)

where µ is a parameter set to 0.1 in our experiments.
As FedAvgM changes the server aggregation method, FedProx the local loss function,

and FedDiverse the client selection policy, we can use any combination of the 3 methods to
mitigate statistical data heterogeneity. As reflected in table 16, FedDiverse improves the
performance over random selection when combined with every FL method and in all datasets.
The combination of FedDiverse with FedAvgM yields very competitive performance
and hence we opt for FedAvgM as the FL optimization method to be used in all of the
experiments.

5.6 Ablation study
In this section, we study the performance of FedDiverse on the WaterBirds dataset and
under different configurations, reflected in table 17. We compare 3 scenarios:
1. Our realistic setup, where the interaction matrix R̃k and the data heterogeneity triplets

∆̃k are estimated;
2. An ideal –yet unrealistic– scenario where the interaction matrix Rk and therefore the

triplets ∆k are known to the server; and
3. A method where the full interaction matrixRk is sent to the server instead of the triplets.

In this case, the server first computes the client weights ωk that minimize the variance of
the matrix S =

∑
k∈K ωkR

k, i.e., minVar(S) = 1
|Y ||A|

∑
y∈Y

∑
a∈A(sy,a − ν)2, where ν is the

average number of samples per (y, a) groups. We solve it as a convex optimization problem
and use the ωk weight as the probability to sample client k. Note that this method would
raise privacy concerns. We call this method FedRK to highlight that the full interaction
matrix (Rk) has to be shared with the server.
Furthermore, we evaluate the impact of increasing the number of pre-training steps and

compare FedDiverse when combined with FedAvg and FedAvgM.
As seen in the table, perfect knowledge of Rk could yield an increase of up to 5.71 and

3.74 points in worst group accuracy with FedAvg and FedAvgM, respectively. Communi-
cating the true (typically unknown) interaction matrix instead of the triplets could add up
to 4.15 and 4.78 points to the worst-group accuracy with FedAvg and FedAvgM, respec-
tively. Increasing the number of pre-training steps is only helpful with FedAvgM, yet the
performance gains are not significant.
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5.6.1 Comparison with different architectures
In table 18, we report experiments with ResNet50 [HZRS16] on the WaterBirds dataset.
Note that computer vision models used in FL scenarios are typically smaller than a ResNet50
[HQB19; LSZ+20]. However, the spurious correlation literature in centralized machine learn-
ing uses this model in the reported benchmarks [YZKG23]. Thus, we include this experiment
for completeness. As we can observe, FedDiverse improves the performance also on the
ResNet50.

5.6.2 Pre-training with a different number of rounds
In table 19 we summarize the experimental results obtained when increasing the number
of pre-training rounds before using the FedDiverse algorithm to determine the values of
the clients’ DHTs. Note how using T0 = 1 yields similar results to using more pre-training
rounds (with full participation). Thus, we keep T0 = 1 in all experiments to reduce the
computation and communication costs.

5.6.3 Sensitivity analysis of the hyper-parameters of the FedDi-
verse algorithm

To determine the right hyper-parameters for FedDiverse, we conducted an experiment
on the SpawriousGSC dataset by changing the following 3 hyper-parameters: the training
steps of the biased model τbiased = {5, 25, 50, 75, 100}, the training steps of the attribute
classifier τattr = {5, 25, 50, 75, 100}, and the q value of the generalized cross-entropy loss q =
{0.1, 0.3, 0.5, 0.7, 0.9}. We performed an exhaustive grid search on these values. Figure 16
summarizes the results of this sensitivity analysis. We report the Euclidean distance between
the predicted and true DHT values, thus the best parameters correspond to the smallest
distance

min
τbiased,τattr,q

avg
k∈1..K

||∆̃k −∆k|| (34)

In conclusion, we use τbiased = 50, τattr = 10, and select q = 0.3 as the best q value for the
given τ parameters.

5.6.4 Analysis of FedDiverse’s sampling strategy
Figure 17 show the distribution of clients sampled per round as per the FedDiverse client
selection algorithm (as specifically described in algorithms 5 and 6) on the SpawriousGSC,
SpawriousGCI, SpawriousGAI, Spawrious4 and WaterBirdsdist datasets, respectively. Note
that the simulation conducted on figure 17 a) can equivalently be considered as for the
CMNISTGSC dataset, since both CMNISTGSC and SpawriousGSC have the same clients dis-
tributions.
The figures are based on a simulation where 9 clients are sampled per round over 20 training

rounds, following the setup described in the main chapter. Each client is assigned a type
–CI, AI, or SC– based on the highest values of their corresponding metrics, as detailed in
table 13. Clients are then sorted by type, with CI clients having the lowest IDs, followed by
AI and SC clients. The background color in the figures represents the client type while the
percentage in the background indicates the average selection rate for that type across all 20
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Table 17. Ablation study of FedDiverse with different configurations on the WaterBirds dataset.

Method Pre-training (T0) Interaction matrix Message Worst group accuracy (%)
FedAvg FedAvgM

Fe
dD

iv
er
se 20 predicted DHT(∆̃k) 44.03 ± 0.32 55.04 ± 3.09

1 predicted DHT(∆̃k) 46.47 ± 1.31 54.10 ± 2.03

20 known DHT(∆k) 48.08 ± 3.27 58.00 ± 0.77

1 known DHT(∆k) 50.62 ± 3.00 58.88 ± 2.57

Fe
dR

K 20 known Rk 49.74 ± 2.30 58.41 ± 2.04

1 known Rk 51.82 ± 3.79 57.84 ± 0.48

Table 18. Study of FedDiverse combined with other non-IID mitigation techniques using dif-
ferent machine learning models on the Waterbirdsdist dataset.

FL algorithm
MobileNet ResNet50

Random FedDiverse Random FedDiverse

FedAvg 31.72 ± 3.05 46.47 ± 1.31 59.97 ± 2.47 65.47 ± 2.31

FedAvgM 42.42 ± 0.59 54.10 ± 2.03 62.56 ± 0.78 67.81 ± 2.87

FedProx 31.57 ± 2.87 43.51 ± 0.70 62.36 ± 0.94 69.11 ± 1.92

FedAvgM + FedProx 44.29 ± 1.26 53.84 ± 0.90 64.54 ± 3.29 66.77 ± 4.16

Table 19. Study on the effect of pre-training rounds on the final worst group accuracy and
determining the DHT values of the FedDiverse algorithm inWaterBirdsdist dataset using FedAvg
and FedAvgM algorithms for server-side aggregation.

Pre-training(T0)
Worst group accuracy(%) DHT prediction error ||∆̃k −∆k||
FedAvg FedAvgM FedAvg FedAvgM

1 46.47 ± 1.31 54.10 ± 2.03 0.50 ± 0.03 0.50 ± 0.10

5 42.47 ± 1.56 52.80 ± 2.45 0.49 ± 0.07 0.54 ± 0.01

10 42.16 ± 4.29 51.97 ± 4.43 0.47 ± 0.01 0.52 ± 0.02

15 41.20 ± 3.73 53.12 ± 4.54 0.47 ± 0.06 0.52 ± 0.05

20 44.03 ± 0.32 55.04 ± 3.09 0.48 ± 0.02 0.49 ± 0.01

30 42.16 ± 2.39 54.36 ± 2.45 0.49 ± 0.02 0.47 ± 0.04
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Figure 16. FedDiverse’s sensitivity to the biased model’s training steps τbiased, the attribute
classifier training steps τattr and the generalized cross-entropy loss’ q value (q). We use τbiased = 50,
τattr = 10, and selected q = 0.3 as best q value for the given τ parameters.

rounds. In this simulation, we assume that the server has full knowledge of the clients’ true
data heterogeneity triplets.
These plots illustrate how FedDiverse samples the clients in a much more uniform way

within each type, as the percentages are close to 33.3%. Interestingly, figure 17 e) shows that
the 3 clients of type CI are sampled in each round, proving how FedDiverse effectively
succeeds in sampling clients with different types of data heterogeneity.

5.7 Limitations and future work
To the best of our knowledge, FedDiverse is the first algorithm specifically designed to
address the issue of spurious correlations in federated learning. As noted by [WZNK24],
the heterogeneity among clients can help mitigate learning shortcuts that arise from these
spurious correlations. Unlike their approach, which leverages spurious features to create
a Personalized FL solution, the goal of FedDiverse is to develop a single global model
that is resilient to spurious correlations. Furthermore, FedDiverse leverages various types
of statistical data heterogeneity in the clients during each sampling round to enhance the
generalization capabilities of the model and reduce the overall impact of data heterogeneity.
However, FedDiverse is not exempt from limitations. First, it has been designed and

evaluated specifically for image classification tasks. In future work, we plan to extend Fed-
Diverse to other computer vision tasks, such as semantic segmentation for FL, a topic of
growing interest in the community [DZC+23; YGQ+22; SFT+23; FCC23]. The presence
of spuriously correlated features in these tasks could pose security risks by leading models
to rely on misleading patterns, potentially compromising their performance in safety-critical
applications.
Furthermore, FedDiverse could be improved by addressing scenarios with multiple spu-

rious attributes, each with more than two possible values. Future versions could be designed
to approximate multi-dimensional interaction tensors rather than the current bi-dimensional
interaction matrices Rk. These tensors would link the true ground-truth label with various
spurious attributes, accommodating more complex attribute interactions.
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(a) Simulation of the sampling strategy of FedDi-
verse on the SpawriousGSC dataset. With uniform
random sampling, clients belonging to each specific
type would have been sampled with the following pro-
portions: CI=16.7%, AI=16.7%, SC=66.6%. This
simulation can be equivalently interpreted as if the
dataset is CMNISTGSC since the two datasets have
the same client distributions.
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(b) Simulation of the sampling strategy of FedDi-
verse on the SpawriousGCI dataset. With uniform
random sampling, clients belonging to each specific
type would have been sampled with the following pro-
portions: CI=66.6%, AI=16.7%, SC=16.7%.
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(c) Simulation of the sampling strategy of FedDi-
verse on the SpawriousGAI dataset. With uniform
random sampling, clients belonging to each specific
type would have been sampled with the following pro-
portions: CI=12.0%, AI=60.0%, SC=8.0%.
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(d) Simulation of the sampling strategy of FedDi-
verse on the Spawrious4 dataset. With uniform ran-
dom sampling, clients belonging to each specific type
would have been sampled with the following propor-
tions: CI=16.0%, AI=16.0%, SC=68.0%.
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(e) Simulation of the sampling strategy of FedDi-
verse on the Waterbirdsdist dataset. With uniform
random sampling, clients belonging to each specific
type would have been sampled with the following pro-
portions: CI=10.0%, AI=6.7%, SC=83.3%.

Figure 17
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5.8 Conclusion
In this work, we have introduced a novel framework for characterizing statistical data hetero-
geneity in FL, we have presented seven datasets to evaluate the performance of FL methods in
the presence of different types of data heterogeneity, and we have proposed FedDiverse, a
novel and efficient client selection method that selects clients with diverse types of statistical
data heterogeneity. In extensive experiments, we demonstrate FedDiverse’s competitive
performance on all datasets while requiring low communication and computation overhead.
In the next chapter, we explore a use-case for FedDiverse: we investigate the capabilities

of FedDiverse’s diversity-driven client selection to improve group algorithmic fairness in
federated learning.



Chapter 6

Group fairness: a use case of
FedDiverse

Figure 18. Content presented in this chapter in the scope of the thesis.

6.1 Introduction
In chapter 3, we illustrate how client selection can be a powerful tool to achieve a variety
of objectives in federated learning. Building on the foundation from chapter 5, where we
introduced FedDiverse, a novel client selection algorithm that leverages client diversity in
non-IID distributed datasets to train robust models, we describe in this chapter ongoing work
that explores a use case of FedDiverse: group algorithmic fairness in FL by mitigating the
bias in distributed computer vision datasets.
Algorithmic fairness [DHP+12] has been extensively studied in machine learning for over

a decade. Its importance has grown as machine learning methods are increasingly applied in
high-stakes scenarios, such as automated decision-making in healthcare or finance [BHN23].
However, achieving fairness in machine learning is a difficult task given the biases present in
the data, the design choices, and the use of the models.
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As described in chapter 1, federated learning (FL) has been proposed as a privacy-preserving
solution for distributed machine learning, where clients (e.g. hospitals) have access to sen-
sitive data and are willing to cooperate to train a global machine learning model together
without sharing the private data. Therefore, a central server is designed to collect model up-
dates instead of the sensitive information to construct a robust global model through aggrega-
tion [MMR+17]. However, building a fair FL system involves additional challenges compared
to traditional algorithmic fairness, given the restrictions of private data and efficient com-
munication, and the interests of multiple stakeholders in a distributed system [KMA+21].
As described in chapter 5, FedDiverse is a novel client selection algorithm for FL pro-

posed in this thesis and designed to mitigate data heterogeneity in biased federated datasets.
It leverages the diversity of the client data [NFN+25], hence its name. Clients estimate a
data heterogeneity triplet based on the class imbalance, attribute imbalance, and spurious
correlation statistics of their data. The server selects diverse clients based on these scalar
triplets submitted by the clients. We have also proposed a method to determine the inter-
action matrix of the client data when the spurious attributes are unknown.
In this chapter, we investigate whether FedDiverse can be applied to improve group

algorithmic fairness in scenarios where there is a bias in client data that leads to unfairness
in the trained models. The diversity in the distributions of the data in the clients allows for
training federated models with client selection to promote the participation of clients with
data from globally underrepresented protected groups.
To understand the background of fairness in federated learning, we introduce key concepts

in section 2.6. The structure of the rest of the chapter is as follows: and in section 6.3 we
present the most relevant existing research on fairness in federated learning. Section 6.4
discusses the application of FedDiverse for group algorithmic fairness and sections 6.5
and 6.6 summarizes our results. Finally, in section 6.7 we outline future research directions.

6.2 Fairness in FL

6.2.1 FL fairness notions
Given that federated learning is a multi-agent system where the interests of the different ac-
tors do not always align, fairness can be addressed from different perspectives. [SYL23] and
[HYS+24] categorize the notions of fairness in federated learning as fairness in performance
and collaboration. On the one hand, performance fairness includes the notion of group fair-
ness that aims to ensure the fairness of protected groups represented in multiple clients, and
performance distribution fairness that aims to achieve equal performance between clients.
On the other hand, collaboration fairness or cooperation fairness includes notions in which
the goal is to reward clients according to their contribution to the federation. Table 20
summarizes the notions of fairness in federated learning, following [SYL23].

6.2.2 Algorithmic fairness in federated learning
In this research, we focus on group algorithmic fairness in federated learning, i.e., how fairly a
trained model performs across protected groups, which may be defined by attributes such as
gender, race, religion or age. In cross-silo federated learning, where each client is typically an
organization, e.g.a bank or a hospital, with private datasets, fairness concerns often relate
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Table 20. Fairness notions introduced in federated learning

Fairness notion Description
Fair performance

Good-Intent Fairness Minimize maximum loss of protected group
Group Fairness Improve algorithmic fairness metrics for protected group
Accuracy Parity Reduce performance differences between clients

Fair collaboration
Selection Fairness Ensuring fair selection of underrepresented clients
Contribution Fairness A client’s reward should be proportional to it’s contribution
Regret Distribution Fairness The clients are motivated fairly through time until the train-
and Expectation Fairness ing terminates

to how well the model performs across subgroups within these datasets. In contrast, in
cross-device federated learning, each client typically corresponds to an individual (e.g. a
personal smartphone), such that fairness efforts focus on ensuring equitable performance at
the individual or client level. A recent systematic literature review highlights the growing
interest in addressing group fairness in FL research [SACA24].

6.2.3 Group fairness metrics
Measuring group algorithmic fairness has long been a subject of debate in the scientific
community. A widely accepted guideline is that the choice of fairness metric should depend
on the nature of the real-world task at hand [VR18]. However, when it comes to toy datasets
commonly used in federated learning research, there is often no consensus on which fairness
metric is most appropriate, even for the same task.
Table 21 provides an overview of the most commonly used group fairness metrics in FL for

image classification tasks, which is the focus of this thesis. Based on our literature review,
the most commonly used group algorithmic fairness metrics for federated learning are equal
opportunity and demographic parity.
These metrics capture fairness from different: while demographic parity focuses on equal

prediction outcomes across groups, regardless of true labels, equal opportunity requires equal
true positive rates, aligning fairness with accuracy for the positive class. Ultimately, the
choice of metric should reflect the societal priorities and risk implications derived from the
specific application domain.

6.3 Related work
[SACA24] categorizes group fairness methods in FL based on where the fairness intervention
takes place. In the first category, fairness is enforced locally, i.e., each client applies fairness
techniques based on the statistics of its own dataset. However, in non-IID settings, the data
distribution observed by a clikent can differ significantly from the global data distribution
seen by the server. For example, a client k might identify a certain group as underrepresented
within its own data and apply a data re-weighting strategy to reduce bias. Yet, this same
group could be well-represented –or even be the majority– across the entire federation.
This mismatch can lead to unintended unfair results in the global model. In the second
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Table 21. Commonly used fairness metrics in Federated Learning for binary label (Y ) prediction
(Ŷ ) and sensitive attribute (A) groups

Metric Definition Methods
Equal Opportunity
(EOp)

Pr(Ŷ = 1|Y = 1, A = 0) = Pr(Ŷ = 1|Y = 1, A = 1) [GGvDS21; KPDG22;
YJ22; WPLK23;
MLZL24; DBT+24;
DS24]

Equalized Odds (EOd) Pr(Ŷ = 1|Y = y, A = 0) = Pr(Ŷ = 1|Y = y, A = 1),∀y ∈ {0, 1} [KPDG22]
Accuracy Parity (AP) Pr(Ŷ = Y |A = 0) = Pr(Ŷ = Y |A = 1) [GGvDS21; KPDG22;

HWS24]
Demographic Parity
(DemPar)

Pr(Ŷ = 1|A = 0) = Pr(Ŷ = 1|A = 1) [YJ22; HWS24;
MLZL24; DS24;
WPLK23; DBT+24;
CZZZ25]

Predictive Equality
(PE)

Pr(Ŷ = 1|Y = 0, A = 0) = Pr(Ŷ = 1|Y = 0, A = 1) [YJ22]

Worst group accuracy
(WGAcc)

minPr(Ŷ = y|Y = y, A = a), ∀y, a ∈ {0, 1} [PMB+22; HWS24]

Well-Calibration
(WCal)

Pr(Y = 1|Ŷ = ŷ, A = 0) = Pr(Y = 1|Ŷ = ŷ, A = 1),∀ŷ ∈ 0, 1 [WPLK23]

Discrimination Index
(DI)

∣∣∣Pr(Ŷ = 1|A = 0)− Pr(Ŷ = 1|A = 1)
∣∣∣ [DBT+24]

category, fairness is enforced globally by the server. An example of this approach can consist
of client selection to increase the participation of clients with data from underrepresented
groups [ZKW20; SFAA23]. Finally, in the hybrid category, the server and the clients work
together to achieve fairness, which typically requires the adaptation of the training algorithm
on both the clients and the server.
Recent group fairness methods in federated learning for image classification include [GGvDS21],

where the authors present an approach that adapts the differential multipliers method to
FL to solve the constrained optimization problem of minimizing the loss with a fairness
constraint. In [KPDG22], the server weights the clients based on their model fairness on a
server-side validation set Dv (e.g. assigns the weights that maximize Acc

`fair
in Dv). [YJ22]

trains an encoder-decoder network to generate adversarial samples on the clients to mitigate
bias.
Additional methods include [PMB+22], where clients compute the empirical risk score of

the previous global model on their private dataset and send it back to the server together
with their model update. The server assigns weights to the clients based on this additional
information. [HWS24] follows the same idea combined with a fairness regularizer in the
client-side optimizer. [WPLK23] applies a fairness regularizer on the server side, where the
bias of the local datasets is close to their shared gradient updates. [MLZL24] implements a
constrained optimization method on the client level while grouping clients on the server to
use equal weights for the groups in the aggregation. The approach proposed by [DBT+24]
uses an evolution algorithm to apply fair aggregation on the server side. [DS24] applies a
fairness regularizer with a learnable λ weight updated along with the model weights in a
federated manner. [CZZZ25] trains a generator on the server using the client models that is
shared with the clients to generate synthetic data for bias mitigation.
Alternatively, [SGAA24] uses clustered federated learning to train multiple global models,

each trained by similar clients with local bias mitigation.
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Several authors have proposed assigning different weights to the clients to achieve group
fairness. The first article that compared local data re-weighting with client weighting to
achieve group fairness by manipulating the participation of the clients from the server side
was presented by Abay et al. in 2020 [AZB+20]. Some of the previously described methods
find inspiration in this work and also use client weighting to mitigate bias in the clients
[KPDG22; PMB+22; HWS24; MLZL24].
Alternatively, client selection can be applied to improve group fairness. The differences

between client weighting and client selection are explained in the taxonomy of presented
in chapter 3. In [SFAA23], the server uses a validation set DV to infer the importance
of the client models for fairness and hence select the best candidates. [ZKW20] designs a
multi-agent reinforcement learning system to optimize client selection for fairness in FL.

6.3.1 Algorithmic Fairness Datasets in Federated Learning
Similarly to group fairness metrics, there is no consensus on benchmark datasets used to
evaluate group fairness in federated learning. In this section, we summarize the most com-
monly used datasets, focusing on image datasets –which is the focus of this thesis– with
realistic protected groups (e.g.datasets involving human data).

CelebA

The CelebFaces Attributes Dataset (CelebA) is an image dataset containing more than 200K
faces from 10K individuals annotated with 40 binary attributes [LLWT15]. The dataset
is used in federated learning because the images can be distributed based on the identi-
ties [CDW+19] to simulate cross-device FL, or with multiple individuals used in one client
for cross-silo setting [CZZZ25]. While most of the FL literature has used gender as the
protected attribute, the reported experiments vary depending on the target of the classifi-
cation task, including attractiveness [KPDG22; YJ22; DS24], smiling [WPLK23; MLZL24;
DBT+24], and wavy hair [CZZZ25].

UTKFace

The UTKFace Large Scale Face Dataset [ZSQ17] consists of 20k face images labeled by age,
gender and ethnicity. FL fairness research mostly uses ethnicity as the protected attribute
and gender [KPDG22; CZZZ25] or binarized age [MLZL24; DS24] as the classification target.

FairFace

The FairFace dataset consists of 100k images balanced on ethnicity [KJ21]. It contains
ethnicity, gender and age groups. [CZZZ25] uses ethnicity as the protective attribute and
gender as the classification target.

Additional image datasets

Other image datasets with orchestrated sensitive groups include FEMNIST, a dataset con-
taining 800k handwritten characters by 3500 users commonly used in FL literature [CDW+19].
One fairness research study from the literature has reported using the color of the pen as the
protected group, which is a somewhat arbitrary decision: the dataset consists of black pen



82 6.4. GROUP FAIRNESS WITH FEDDIVERSE

and blue pen characters on a white background, and white chalk on a blackboard [GGvDS21].
Datasets like FashionMNIST [XRV17] and CIFAR-10 [Kri09] are also used with each label
considered both as the target label and protected attribute [PMB+22]. Additionally, a new
image dataset adapted by the fairness community but not yet used by the federated learning
researchers is the FACET [GRR+23] dataset, which includes 32k annotated images of 50k
people.

Tabular data

Tabular datasets are commonly used to evaluate group fairness in centralized and federated
learning research. These experiments typically involve learning logistic regression [DXWT21;
AZB+20; CPL+21; ZKL+21] or small multilayer perceptron [PDG21; GGvDS21] models.
In this context, the most commonly used fairness datasets are: the Adult [KB96] dataset,

where the target classification is > $50K salary and the sensitive group can be gender or
race [AZB+20; ZKW20; DXWT21]; and the COMPAS [ALMK19] dataset, consisting of
7000 samples with the probability of “re-offend” as the target variable and gender or/and
race as the protected attributes, is also frequently used in the literature [AZB+20; ZKW20].
The ACS Employment dataset, consisting of 1 million samples from the American Com-

munity Survey via Folktables, filtered for employment classification [DHMS21] and with race
or gender as protected attributes is of particular interest for FL research because it is possible
to naturally distribute the data among states as clients in the federation [HWS24; YPN24].

6.4 Group fairness with FedDiverse
We address fairness in federated learning as a use case of FedDiverse, presented in chap-
ter 5. Intuitively, if the lack of fairness originates from a representation bias in the training
dataset across clients, a FL method that is mitigates the effects of data heterogeneity in the
clients could be applied to achieve algorithmic fairness.
Given X input space, Y = {0, 1} binary label space and A protected attribute space and

Ω parameter space, let f : X → Y be a predictor function parameterized by θ ∈ Ω. For
D = {xi, yi, ai} dataset, where each (xi, yi, ai) ∈ X × Y ×A, the goal is to determine the θ
parameter that minimizes the loss function:

min
θ∈Ω

L(θ) = 1

|D|
∑

(x,y,a)∈D

`BCE(y, f(x,θ)),

where `BCE is the binary cross-entropy loss, while maintaining good fairness measured by
the three most commonly used group fairness metrics in federated learning (see section 2.6):

Equal opportunity: Pr(Ŷ = 1|Y = 1, A = 0) = Pr(Ŷ = 1|Y = 1, A = a),∀a ∈ A, (35)
Demographic parity: Pr(Ŷ = 1|A = 0) = Pr(Ŷ = 1|A = a),∀a ∈ A (36)
and Worst group accuracy: minPr(Ŷ = y|Y = y, A = a),∀y ∈ Y , a ∈ A, (37)

We consider D =
⋃

k∈KDi the union of the private datasets Dk of k ∈ K clients. We
define the interaction matrix R ∈ R|Y|×|A| such that each element of the matrix rk,l ∈ R
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contains the number of samples of the respective population in the dataset rl,m = |G|, where
G = {(x, y, a) ∈ D, y = l, a = m}. We denote Rk the interaction matrix of the dataset Dk

of client k.
FedDiverse [NFN+25] consists of 3 steps:
(1) First, an interaction matrix predictor infers R̃k if a is unknown for (x, y, a) ∈ Dk.
(2) Next, the clients generate a data heterogeneity triplet ∆k from the interaction matrix

Rk to preserve privacy.
(3) Finally, the server S selects clients that are distant in the data heterogeneity space

(∆ ∈ [0, 1]3) to maximize diversity and complementarity in the data distributions.
Given a minority group (y, a), if ∃k ∈ K :

rky,a∑
(i,j)∈(|Y|×A) r

k
i,j

> ry,a∑
(i,j)∈(|Y|×A) ri,j

, increasing
the participation of that client k can be seen as a resampling method for fairness optimiza-
tion [KC12].

6.5 Experiments

6.5.1 Datasets
As previously described, we evaluate the performance of FedDiverse and related methods
on three commonly used image datasets, namely:

CelebA: To created a federated version of this dataset, we select images of 20 individuals
of the CelebA dataset for every client. To simulate bias in the training data, we adjust
the number of individuals per (target, attribute) group, where individuals are placed in the
group represented by the majority of their image instances. We use the binary variable wavy
hair as the target label and gender as the binary protected attribute (male/female). We
adopt a similar data distribution to that of the SpawriousGSC dataset presented in table 13,
where instead of 90 and 10 samples, we use 9 and 1 individuals, respectively [NFN+25].
This results in a dataset with (wavy hair, male) as the underrepresented group and varying
numbers of samples depending on the selected individuals.

UTKFace: Unlike CelebA, the UTKFace dataset does not have natural federated splits.
Hence, we apply the data split described in section 5.5 for the Spawrious dataset simulating
spurious correlations (SpawriousGSC). We use race in a binarized form (white – non-white)
as the protected attribute and gender (male – female) as the binary target variable. Note
that 47% of the samples in the UTKFace dataset are labeled as white, we obtain a fairly
balanced pool for the data split to select from. In the FL simulated scenario, the minority
groups are (white, female) and (black, male).

FairFace: Similarly to UTKFace, this dataset does not have a natural federated split,
thus we apply the same data split and use the same target and sensitive attribute labels as
for UTKFace.

6.5.2 Experimental setup
We simulate a federated learning scenario with 24 clients using both the Flower [BTM+20]
and PyTorch [PGM+19] frameworks. Our code is available at https://github.com/Erosinho13/
SpuriousFL.

https://github.com/Erosinho13/SpuriousFL
https://github.com/Erosinho13/SpuriousFL
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Table 22. Comparing FedDiverse with FedAvg random client selection for algorithmic fairness
in federated learning

Dataset Method Acc(%) WGAcc (%) ∆EOp (↓) ∆DemPar (↓)

CelebAGSC
FedDiverse 83.95 ± 0.06 55.12 ± 2.29 0.13 ± 0.02 0.37 ± 0.02

Random 84.41 ± 0.14 50.72 ± 1.41 0.14 ± 0.03 0.39 ± 0.03

UTKFaceGSC
FedDiverse 87.60 ± 0.45 79.44 ± 1.61 0.10 ± 0.03 0.10 ± 0.01

Random 87.99 ± 0.75 81.01 ± 2.95 0.09 ± 0.01 0.11 ± 0.01

FairFaceGSC
FedDiverse 79.00 ± 0.67 70.08 ± 3.23 0.13 ± 0.01 0.11 ± 0.01

Random 79.82 ± 0.58 72.22 ± 2.69 0.14 ± 0.01 0.12 ± 0.01

FL architecture The server and the clients train a MobileNet v2 [How17] model, where
batch normalization layers are replaced with group normalization layers and initial weights
are pre-trained on Imagenet. We apply the categorical crossentropy loss function with 0.001
learning rate and a batch size of 28. We train the federation for T = 200 rounds with equally
weighted clients. In experiments without client selection, all clients (24) participate in the
federation in every round. In the cases where client selection is performed, the server selects
9 clients to participate in the federation in each round. We report average accuracy, worst
group accuracy, demographic parity, and equal opportunity averaged over 3 runs.

Baseline We compare the proposed methods with a uniform random selection, where
clients are randomly selected according to a uniform distribution.

6.6 Results

6.6.1 FedDiverse for group fairness
Experiments with the original FedDiverse privacy settings are summarized in table 22
and show promising results to achieve fairness in image classification tasks. For the CelebA
dataset, FedDiverse outperforms the baseline in worst group accuracy (4.4% increase),
equalized opportunity (0.01 reduction) and demographic parity (0.02 reduction) while main-
taining competitive accuracy (0.46% drop compared to random). For UTKFace, FedDi-
verse outperforms the baseline if demographic parity (0.01 reduction) and for FairFace it
outperforms in demographic parity (0.01 reduction) and equalized opportunity (0.01 reduc-
tion).

6.6.2 Relaxed privacy requirements for improved group fairness
In section 5.6, we presented three variations of the FedDiverse algorithm with varying
levels of privacy implications depending on the metadata that is shared as part of the fed-
eration.
The most privacy-preserving option would be not to share any metadata. In this case, it is

not possible to apply diversity-driven client selection. Hence, we use random client selection
with FedAvg.
In the second level, the sensitive attributes are excluded from the training, aiming to achieve

what is known in the literature as fairness under unawareness [CKM+19]. In FedDiverse,
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the majority and minority groups are inferred based on the performance of a biased model:
examples with poor performance are hypothesized as members of the minority group instead
of using the minority group given by the protected attributes.
In the next privacy level, the protected attributes are known to the clients but they are not

shared with the server. In FedDiverse, this entails sharing the data heterogeneity triplets
(DHT) with the server.
In the least private level, the clients share their interaction matrix with the server which

uses this information to re-weight the clients, adopting a similar methodology as that of
the ReWeight method [LBC+20] in centralized learning. In this case, we use the FedRK
method described in section 5.6, which assigns a selection probability to the clients based
on the weights derived from the clients’ interaction matrix.
Table 23 summarizes the results of the experiments applying these four levels of attribute

privacy on the CelebA, UTKFace and FairFace datasets. As seen in the table, the best
performing method –in terms of group fairness– is FedRK. On the CelebA dataset, FedRK
achieves an increase of 8.15 percentage points in worst group accuracy, a decrease of 0.49
percentage points in accuracy, and an improvement of 0.03 and 0.05 in equalized opportunity
and demographic parity, respectively, when compared to the baseline. On the UTKFace
dataset, FedRK achieves an increase of 3.81 percentage points in worst group accuracy,
of 0.29 percentage points in accuracy, and an improvement of 0.05 and 0.06 in equalized
opportunity and demographic parity, respectively, when compared to the baseline. On the
FairFace dataset, we observe an increase of 3.55 percentage points in worst group accuracy, of
0.67 percentage points in accuracy, and an improvement of 0.07 in both equalized opportunity
and demographic parity, with respect to the baseline. Both variations of FedDiverse
achieve very competitive levels of accuracy and worst group accuracy while improving the
group fairness metrics when compared to the baseline.

6.7 Conclusion and future work
Our experiments illustrate the value of applying diversity-driven client selection algorithms
for group algorithmic fairness in federated learning. We also demonstrate the interplay
between the level of privacy in the shared diversity descriptors and the algorithmic fairness
of the trained model.
One limitation of FedDiverse is that it expects a binary attribute space, internally classi-

fying samples as belonging to a majority or minority group. Although most fairness datasets
include binary groups, there are also datasets that consist of multiple sensitive attributes.
Therefore, an future research should explore the possibility of predicting binary tensors for
the interaction matrix in FedDiverse. One such direction consists of leveraging clustering
algorithms to infer the interaction matrix.
Interestingly, FedDiverse does not rely on knowledge of the protected attribute for bias

mitigation. Future research could investigate whether this design internalizes the discrimi-
nation between protected groups or the model classifies hard examples orthogonally to the
sensitive attribute.
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Table 23. Performance of the client selection method given different levels of privacy requirements
on the CelebA, UTKFace and FairFace datasets

(a) CelebA

Privacy setup Acc(%) WGAcc (%) ∆EOp (↓) ∆DemPar (↓)
Random (No shared stats) 84.41 ± 0.14 50.72 ± 1.41 0.14 ± 0.03 0.39 ± 0.03

FedDiverse (Predicted DHT) 83.95 ± 0.06 55.12 ± 2.29 0.13 ± 0.02 0.37 ± 0.02

FedDiverse (Known DHT) 83.83 ± 0.14 58.54 ± 0.65 0.14 ± 0.01 0.37 ± 0.02

FedRK (Known Rk) 83.92 ± 0.25 59.57 ± 5.59 0.11 ± 0.03 0.34 ± 0.02

(b) UTKFace

Privacy setup Acc(%) WGAcc (%) ∆EOp (↓) ∆DemPar (↓)
Random (No shared stats) 87.99 ± 0.75 81.01 ± 2.95 0.09 ± 0.01 0.11 ± 0.01

FedDiverse (Predicted DHT) 87.60 ± 0.45 79.44 ± 1.61 0.10 ± 0.03 0.10 ± 0.01

FedDiverse (Known DHT) 88.60 ± 0.60 82.62 ± 1.64 0.08 ± 0.02 0.08 ± 0.01

FedRK (Known Rk) 88.28 ± 0.10 84.86 ± 2.92 0.04 ± 0.01 0.05 ± 0.00

(c) FairFace

Privacy setup Acc(%) WGAcc (%) ∆EOp (↓) ∆DemPar (↓)
Random (No shared stats) 79.82 ± 0.58 72.22 ± 2.69 0.14 ± 0.01 0.12 ± 0.01

FedDiverse (Predicted DHT) 79.00 ± 0.67 70.08 ± 3.23 0.13 ± 0.01 0.11 ± 0.01

FedDiverse (Known DHT) 79.99 ± 0.28 70.49 ± 2.17 0.12 ± 0.01 0.10 ± 0.00

FedRK (Known Rk) 80.49 ± 0.49 75.77 ± 2.72 0.07 ± 0.01 0.05 ± 0.01



Chapter 7

Conclusion

In the previous chapters, we presented our work done in the field of federated learning,
specifically focusing on the impact of data, model and participation heterogeneity on per-
formance, privacy and fairness in federated learning. In this chapter we summarize the key
contributions, discuss the limitations of our work and propose future research directions.

Summary of key contributions: Federated Learning (FL) is an emerging field with
impact on a variety of domains. The diverse list of challenges and solutions proposed in FL
makes comparing and evaluating novel FL methods a complex endeavor. To simplify this
task, in chapter 3 we proposed a novel taxonomy of client selection in FL that enables the
categorization and comparison of different FL methods. A key yet unrealistic assumption in
FL is homogeneity in the clients and their data. In this thesis, we relax such an assumption
and contribute to the field of FL with several novel contributions that allow for heterogeneous
FL settings.
We start with model heterogeneity in chapter 4 where we investigate FL architectures

where the clients learn models of different complexities depending on their computation
capabilities. We present a novel taxonomy of model integration methods and perform an in-
depth study of the privacy implications of such strategies: in the case of IID in the clients, we
find that the model integration strategy can have a significant impact on privacy. However,
non-IID setups are challenging for state-of-the-art methods and require further investigation.
We address such a challenge in chapter 5, where we propose FedDiverse, a novel client

selection algorithm that leverages the data heterogeneity in the clients – namely attribute
imbalance, class imbalance, and spurious correlations – to mitigate the difficulties that arise
from having non-IID data.
Finally, in chapter 6, we explore a socially impactful application of FedDiverse by inves-

tigating how its client selection strategy can be leveraged to enhance group fairness in FL.
Specifically, we examine scenarios where data is heterogeneously distributed across demo-
graphic or socially-defined groups – such as race, gender, or geographic region – and show
how FedDiverse can mitigate disparate model performance across these groups. Through
targeted client participation, our method promotes equitable representation in the learning
process, thereby contributing to more inclusive and fair FL models.
In sum, this thesis provides key contributions in the field of federated learning with client

or data heterogeneity to yield robust, accurate, and fair models that respect the clients’
privacy. In the next paragraph, we address the limitations of our work.
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Limitations and challenges: Federated Learning is an engineering-heavy research field.
Like all research in FL, ours is also bounded by design choices, namely: (1) We limit our
experiments in chapter 4 to attacks taking place in the last client model update; (2) We
measure privacy with membership inference attacks; (3) In chapter 5, we limit experiments
to small, but well-controlled data distributions and datasets; (4) Furthermore, we design our
client selection and model-agnostic methods to be modular and easy to combine with existing
frameworks. However, this comes with a cost of competitiveness compared to complex
methods designed for the sole purpose of dealing with the task at hand.
Future work should be designed to address these limitations. Additionally, in the next para-

graph, we describe interesting research ideas that can serve as the basis for the continuance
of the research presented in this thesis.

Future research directions: A direction for future research concerns the work described
in chapters 5 and 6. Current research on non-IID data in FL focuses on building general,
robust methods. In this chapter, we adopted a different approach and designed experiments
with control of the statistical heterogeneity in the datasets. We believe that this research can
be extended to develop metrics that measure the expected non-IIDness in the distributed
data before the training, allowing us to design better task-specific FL methods. Additionally,
future research should include a more in-depth analysis of the interplay between different
objectives in FL, such as privacy in chapter 4 and fairness in chapter 6.



Appendix A

Appendix for chapter 3

A.1 Highlighted client selection algorithms
In this section, we provide a summary of the client selection algorithms included in table 4
and discussed in this paper. These methods have been selected because of their relevance in
the field and/or because they represent a specific category of our taxonomy.

Baseline selection strategies
The two most commonly used baseline client selection strategies are EqRep and EqW, pre-
sented below.

EqRepbaseline
Equal representation of clients (EqRepbaseline): with a total of |K| clients and |St| selected

clients in round t of the training, each client has a Pr(k ∈ St) = |St|
|K| probability to participate

in the round. This approach is often referred to as random client selection. Its motivation
is to have all clients participating equally. The original FedAvg method use EqRepbaseline
to reduce the number of participating clients.

EqWbaseline
Equal weights of data samples (EqWbaseline): the probability of participation for client k

is proportional to the fraction of data that the client has access to Pr(k ∈ St) = |Dk|
|D| . Thus,

to compute the probability the server needs to know the clients’ dataset size, |Dk|, ∀k ∈ K.
The motivation is to achieve equal representation for all data samples in the training.

Methods motivated by improving training efficiency
AFLG
In Active Federated Learning (AFLG)10 the client k has a valuation in training round t,

vtk, based on its reported loss [GMB+19]. If a client participates in training round t, its
valuation is updated, otherwise it remains the same as in the previous training round t− 1,
vtk = vt−1

k , k /∈ St. All the clients start with a negative infinite valuation, v0k = −∞,∀k ∈ K.
The value interpretation is a probability function based on this value with additional clients

10AFL refers to Agnostic Federated Learning [MSS19], Active Federated Learning [GMB+19] and Anarchic
Federated Learning [YZKL22]. We separate them using the initials of the first authors, AFLM, AFLG and
AFLY respectively.
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selected for exploration. The motivation is to achieve the same performance as the baseline
client selection algorithms but with fewer training epochs.

pow-d
In Power-of-Choice Strategy (pow-d), first a candidate set (A ⊂ K) is selected based on

the fraction of their data, |Di| (as in EqWbaseline). Then the clients in A compute their local
losses and report them back to the server. The clients with the highest losses are selected
St ⊂ A [CWJ22]. This method improves both the convergence rate and the accuracy when
compared to random selection (EqRepbaseline).

S-FedAvg
In the Shapley-value based federated averaging (S-FedAvg) method proposed by Na-

galapatti and Narayanam [NN21], the server uses a verification dataset (DV ) to determine
the clients’ contributions using Shapley values. Then, it selects the clients with a proba-
bility proportional to their contribution value. This method reaches higher accuracy than
FedAvg.

k-FED
In k-FED, a local k-mean clustering is proposed to generate a compressed data descrip-

tion [DLS21]. Then, the cluster centroids in each client, Gk, k ∈ K, are sent to the server.
The server does not include in the training clients with similar cluster centroids. This ap-
proach is evaluated with a combination of pow-d and the results show that it can boost the
training convergence even further.

LAG
The Lazily Aggregated Gradient (LAG) [CGSY18] method stores previous updates of the

clients and predicts their future performance using a Lipschitz-smoothness (Lf ) estimator.
In this approach, the updates are computed only on valuable clients as decided by the client
or the server. Early stopping is possible if none of the clients sends updates. The motivation
for the development of this method is to reduce the communication between clients and the
server.

FL-CIR
Federated learning with class imbalance reduction (FL-CIR) [YWZ+21] proposes a multi-

armed bandit method to select a client set with minimum class imbalance. Each client
represents an arm, and the selected clients are a super-arm (set of arms). The reward of the
super-arm is computed based on the results of the current training round. The motivation
is to reduce the impact of non-IIDness in the data and hence improve the overall model’s
accuracy.

FAVOR
Optimizing Federated Learning on Non-IID Data with Reinforcement Learning (FAVOR)

[WKNL20] formulates the client selection problem as a RL task, where the server acts as
an agent, the state st = θt,θt

1, ...,θ
t
N summarizes the current parameters in each client, the

action consists of selecting a client for the next training round and the reward is the sever-
side accuracy. The server has a local validation set (DV ) to evaluate the clients’ models.
The method’s effectiveness is demonstrated with experiments where the target accuracy is
reached with fewer communication rounds than previous methods.
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Other global constrains
In addition to improving the training efficiency, several research works have explored other
global constrains to guide the client selection process.

FedCS
Nishio and Yonetani [NY19] proposed one of the first client selection methods called Fed-

erated Learning with Client Selection (FedCS). The clients report their resource requests
to the server in the form of an estimated compute time T . The global constrain is defined
as a maximum compute time per client. Thus, the server selects the clients that fulfill such
a constrain.

AFLM
Agnostic Federated Learning (AFLM), Mohri, Sivek, and Suresh [MSS19] aims to minimize

the maximum loss of the clients’ performance (good-intent fairness). The server updates a
λ distribution function in every training round based on these local losses, and λ is used to
reweigh the samples or to select clients that match a target data distribution.

q-FFL
q-Fair Federated Learning (q-FFL) aims to achieve a uniform accuracy across all clients Li

et al. [LSBS20]. First, the server select clients according to a uniform probability. Then, the
server reweighs the client parameters based on the Lipschitz constant (Lf ) of the local loss
functions.

Oort
In Oort, Lai et al. [LZMC21] utility scores are used to rank the clients and the server

selects the top-K performers. The utility function depends on the local loss and the training
time and it is given by: Util(k) = |Bk|

√
1
Bk

∑
i∈Bk

`(f(xi), yi)2× T
Tk

1(T <Tk)×α, where Bk ⊂ Dk

is a subset of samples in client k; T and Tk are the global and local needed training time,
respectively; 1(x) is 1 if x true, 0 otherwise, and α is a hyperparameter. Oort also includes
an exploration component to increase the data diversity.

FLAME
FLAME: Federated Learning Across Multi-device Environments (FLAMEC)11 builds en-

ergy profiles for each client and clients have a maximum allowed budget of energy con-
sumption. The clients compute their utility scores using the training loss (L), the energy
consumption (E) and the required computational time(T ). The server selects the clients
with the largest overall utility. In their experiments, even though clients have limited energy
and therefore, limited participation [CMK22].

DDaBA
Dynamic Defense Against Byzantine Attacks (DDaBA) [RMLH22] tries to identifiy ad-

versarial clients based on the local update’s accuracy on the server-side validation set DV .
It flags potentially harmful clients when the accuracy of their local update changes dramat-
ically between rounds. Experiments show that this approach is effective against byzantine
attacks.

Client inclusion policies
Regarding client inclusion policies, we highlight two methods proposed in the literature.

11There are at least 3 FL papers with the FLAME acronym. We include the initial of the first author as
a subscript to differentiate between them.
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LT-FL
Loss Tolerant Federated Learning (LT-FL) [ZFH21] classifies the clients into two cate-

gories, depending on whether they have enough resources to retrieve lost communication
packages or not. The clients in the first group are expected to send an updated model to
the server in all cases. However, the weights of the clients from the second group may be set
to zero if their packages get lost.

FD
Federated Dropout (FDropout) [CKMT18] use model compression (via dropped neurons)

to reduce the size of the clients. The dropped neurons are not randomized but computed in
such a way to have the same smaller matrix dimension in each client. Moreover, the server
is able to map them back together to their original model size. This technique increases the
server-client communication efficiency while keeping the original prediction accuracy. Later
work [DDT21; LWW+22] use the same idea to allow for heterogeneous model sizes in clients
with different capabilities.

Incentive mechanisms
Finally, we include a summary of the three highlighted methods that propose different in-
centive mechanisms.

CI-MR
In Contribution Index Multi Round Reconstruction (CI-MR), all clients perform their

local training and send the results back to the server which weights them depending on the
size of the local datasets in each client, similarly to EqWbaseline. At the end of the training,
the server uses Shapley values to determine the data quality of the clients to define the
payment of their incentive [STW19].

FMore
FMore: an Incentive Scheme of Multi-dimensional Auction (FMore) [ZZWC20] is an

incentive mechanism where the server shares a scoring function (Value Generation function)
with the clients, the clients compute their utility scores based on their local resources and
offer a bid with a payment proposal. Based on this information, the server selects the clients
for that round of training.

CBIM
Contract-Based Incentive Mechanism (CBIM) [KXN+19a] uses contract theory to select

the right cluster of clients based on the clients’ utility scores. It also keeps track of the
reputation of the clients via a blockchain mechanism.



Appendix B

Appendix for chapter 4

B.1 Detailed experiment results
Results on the two CIFAR datasets are summarized in the main paper in included in detail
in table 24 and table 25.
Table 26 includes the detailed experiment results for the FEMNIST dataset.
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Table 24. Detailed results on the CIFAR-10 dataset. Experiments averaged over 3 runs. Best in
each category highlighted with bold. Methods are grouped by number of large clients and ordered
based on the frequency a client receives the same parameters.
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Table 25. Detailed results on the CIFAR-100 dataset. Experiments averaged over 3 runs. Best in
each category highlighted with bold. Methods are grouped by number of large clients and ordered
based on the frequency a client receives the same parameters.
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Table 26. Detailed results on the FEMNIST dataset. Experiments averaged over 3 runs. Best in
each category highlighted with bold. Methods are grouped by number of large clients and ordered
based on the frequency a client receives the same parameters.
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Appendix C

Appendix for chapter 5

C.1 FedDiverse pseudo-code
Algorithm 6 contains the pseudo-code of the FedDiverse algorithm. Specifically:

• Algorithm 1 contains the pseudo-code for FedDiverse’s pre-training phase.

• Algorithm 2 shows how clients in FedDiverse train the biased model.

• Algorithm 3 corresponds to how clients in FedDiverse train the attribute classifier.

• Algorithm 4 illustrates how FedDiverse computes the data heterogeneity triplets.

• Algorithm 5 contains FedDiverse’s sampling strategy according to the data hetero-
geneity triplets.

• Algorithm 6 depicts the overall procedure.

Algorithm 1: - Pre-training(κ, T0, τ0)
Let: Model f , global parameters θ0

for each round t ∈ [T0] do
Randomly sample St ⊆ K such that |St| = κ
S sends global parameters θt to all the clients in St

for each client k ∈ St, in parallel do
θk = θt

θt+1
k = ERM(f(θk); `CE;Dk; τ0)

Send θt+1
k to S

end for
θt+1 =

∑
k∈St

nk

n
θt+1
k

end for
Return θT0
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Algorithm 2: - Biased-model-training(θT0 , τbias, q)
Let: `GCE(f̄k(x;θ), y) =

1−f̄k(x;θ)
q

q

Initialize parameters θk of the biased model f̄k with pre-trained parameters θT0

θbias
k = ERM(f̄k(θk); `GCE;Dk; τbias)

G̃k = set of inputs x such that the samples (x, y) ∈ Dk are correctly predicted by f̄k,
i.e.f̄k(x;θbias

k ) = y
g̃k = set of inputs x such that the samples (x, y) ∈ Dk are incorrectly predicted by f̄k,
i.e.f̄k(x;θbias

k ) 6= y
Return θbias

k , G̃k, g̃k

Algorithm 3: - Attribute-classifier-training(G̃k, g̃k, θbias
k , τattr)

Let: f̂ = ψ̂ ◦ ϕ; ψ̂ is the attribute classifier, ϕ is the feature extractor
Compute the pivot class ŷ = argminy∈Y

∣∣∣∣∣∣G̃k
y

∣∣∣− ∣∣g̃k
y

∣∣∣∣∣
Construct the dataset D̂k of pairs (x, ã), for all x such that (x, ŷ) ∈ Dk. ã = 0 if x ∈ Gk

ŷ,
ã = 1 otherwise
Initialize parameters θk = θbias

k

Fix the parameters of the feature extractor ϕ
θattr
k = ERM(f̂(θk); `CE;Dk; τattr)

Return θattr
k , ŷ

Algorithm 4: - DHT-computation(ŷ, G̃k
ŷ, g̃k

ŷ)
Let: Dy

k ⊂ Dk is the set of images in Dk with label y
R̃ = 0|Y|×2

for each y ∈ Y : do
if y = ŷ then

R̃y0 =
∣∣∣G̃k

ŷ

∣∣∣, R̃y1 =
∣∣g̃k

ŷ

∣∣
else

for each (x, y) ∈ Dy
k do

ã = f̂(x;θattr
k )

R̃yã = R̃yã + 1
end for

end if
end for
∆̃k = [∆CI(R̃

k),∆AI(R̃
k),∆SC(R̃

k)]>

Return ∆̃k
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Algorithm 5: - Triplet-sampling(∆̃, Kleft, i)
1) Probabilistic selection

Compute the probability vector p = ∆̃i∥∥∥∆̃i

∥∥∥
1

Sample kp ∈ Kleft according to p
Remove kp from Kleft: Kleft = Kleft \ {kp}

2) Complementary selection
Compute the normalized matrix ∆̃ such that ∆̃k

= ∆̃k∥∥∥∆̃k
∥∥∥
1

, ∀k ∈ K

Find the complementary client kc = argmink∈Kleft

〈
∆̃

kp
, ∆̃

k
〉

Remove kc from Kleft: Kleft = Kleft \ {kc}

3) Orthogonal selection
Find the remaining orthogonal client kr = argmaxk∈K\{kp,kc}

〈
∆̃

kp × ∆̃
kc
, ∆̃

k
〉

Remove kr from Kleft: Kleft = Kleft \ {kr}
Return kp, kc, kr, Kleft
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Algorithm 6: - FedDiverse algorithm. Here, we assume that κ mod 3 ≡ 0 for
readability. If κ mod 3 6≡ 0, the last time algorithm 5 is executed in one round, it will
return fewer clients accordingly.

Input: Number of clients sampled per round κ, number of pre-training rounds T0,
number of training rounds T , number of steps of local training τ0, number of steps of
local biased model training τbias, number of steps of local attribute classifier training τattr,
`GCE hyper-parameter q ∈ (0, 1], FL optimization algorithm Opt, FL aggregator Agg
∆̃ = 03×K

θT0 = Pre-training(κ, T0, τ0)
S sends θT0 to all the clients k ∈ K
for each client k ∈ K in parallel do

θbias
k , G̃k, g̃k = Biased-model-training(θT0 , τbias, q)

θattr
k , ŷ = Attribute-classifier-training(G̃k, g̃k, θbias

k , τattr)
∆̃k = DHT-computation(ŷ, G̃k

ŷ, g̃k
ŷ)

end for
for each round t ∈ [T ] do

Kleft = K
St = ∅
while |St| < κ do
kp, kc, kr, Kleft = Triplet-sampling(∆̃, Kleft, t mod 3)
St = St ∪ {kp, kc, kr}

end while
S sends global parameters θt (and, eventually, additional information) to all the
clients in St

for each client k ∈ St in parallel do
θt+1
k , ... = Opt(θt, ...) # Specific parameters and returned values depend on

the chosen Opt algorithm
Send θt+1

k and eventual other information to S # Specific message depends on
the chosen Opt algorithm

end for
θt+1, ... =Agg({θt+1

k }k∈St , ...) # Specific parameters and returned values depend
on the chosen Agg algorithm

end for



Apéndice D

Resumen en castellano

D.1 Introducción
El Aprendizaje Federado (Federated Learning, FL) es un enfoque de aprendizaje automático
que busca abordar las preocupaciones relacionadas con la privacidad y la seguridad presentes
en el aprendizaje automático centralizado. Consiste en una arquitectura colaborativa y dis-
tribuida, en la cual un servidor se comunica con múltiples clientes (por ejemplo, dispositivos
móviles), de modo que estos mantienen localmente sus datos potencialmente sensibles y pri-
vados, y solo comparten con el servidor los pesos del modelo entrenado y cierta información
de metadatos. La tarea principal del servidor es agregar los parámetros del modelo recibidos
de los clientes para aprender un modelo global mejorado, que luego es redistribuido entre los
clientes. El servidor central puede establecer distintas condiciones de finalización del proceso
de entrenamiento y realizar la agregación del modelo utilizando diversas estrategias y op-
timizadores. Este enfoque para llevar a cabo aprendizaje distribuido ha sido descrito como
un ejemplo de “privacidad desde el diseño” (privacy by design), y por tanto representa una
solución prometedora en aplicaciones sensibles a la privacidad, como la atención médica y el
sector bancario.
Desde su propuesta en 2017 por McMahan et al. [MMR+17], el área del aprendizaje federa-

do ha crecido rápidamente. Una revisión exhaustiva realizada en 2021 describe los avances y
problemas abiertos en FL, y recopila más de 500 trabajos relacionados [KMA+21]. En ella se
analizan los distintos tipos de aprendizaje federado, se exponen los desafíos más relevantes, y
se resumen las direcciones que la comunidad investigadora ha seguido para abordarlos. Esta
tesis adopta la misma notación y definiciones presentadas en Kairouz et al. [KMA+21].

Tipos de FL En cuanto al alcance de un sistema de aprendizaje federado, consideramos
dos categorías principales:

1. FL horizontal vs. vertical Dependiendo de la naturaleza de la distribución de los datos,
los sistemas de FL se dividen en aprendizaje federado horizontal y vertical. El aprendizaje
federado vertical implica que los clientes tienen acceso a diferentes atributos sobre los mismos
individuos, relacionados mediante un identificador único. La motivación para colaborar en
este contexto es construir modelos más precisos al incorporar información complementaria
sobre los individuos, mientras se preserva su privacidad y se evita enviar los datos al servidor
central. En contraste, el aprendizaje federado horizontal se refiere a una federación en la que
las características son las mismas en todos los clientes. En este caso, la motivación para
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colaborar es disponer de una mayor cantidad de datos al agregarlos de forma distribuida,
manteniéndolos privados en los dispositivos de los clientes. El servidor central aprende un
modelo con mejor desempeño que los modelos locales de cualquiera de los clientes individuales
y lo envía de vuelta, permitiendo que todos se beneficien de la federación. En esta tesis, nos
enfocamos en técnicas de aprendizaje federado horizontal.

2. FL entre silos vs. entre dispositivos Considerando la naturaleza de los clientes, existen
dos tipos diferenciables de arquitecturas FL: entre silos y entre dispositivos [KMA+21]. En el
aprendizaje federado entre silos, se espera que los clientes sean confiables, estén disponibles,
tengan estado y sean direccionables. En cambio, en el aprendizaje federado entre dispositivos,
los clientes son actores individuales, diversos y desconectados, que pueden no participar en
la federación por diversas razones, como pérdida de conectividad o alto consumo energético.

Desafíos en FL El campo del aprendizaje federado abarca numerosos temas de investiga-
ción relevantes y se utiliza cada vez más en aplicaciones sensibles a la privacidad [LLGL24].
A continuación, resumimos los desafíos más importantes en FL y algunas estrategias común-
mente empleadas para abordarlos:

1. Eficiencia, cuyo objetivo es entrenar modelos más precisos de manera más rápida, con
una comunicación reducida y liviana con los clientes, ya que esta representa un cuello de
botella importante en las aplicaciones de FL [KMY+16; CSP+21; DLX+24; ZZL+24]. Este
desafío también incluye la necesidad de construir sistemas FL robustos frente a la heteroge-
neidad de los datos, fenómeno comúnmente conocido como datos no-IID (no independientes
ni idénticamente distribuidos) [MRA+12]. Un ejemplo realista donde estos problemas pueden
manifestarse es una empresa que entrena modelos FL en los dispositivos móviles de usuarios
distribuidos globalmente. Los datos pueden depender de las preferencias demográficas de
los usuarios, mientras que la comunicación en línea (posiblemente en redes con tarifas) y las
distancias geográficas pueden motivar el uso de comunicaciones comprimidas y robustas. Las
estrategias para abordar este desafío incluyen la selección de clientes [CWJ22; NLQO22], la
reducción parcial de la complejidad del modelo para clientes con recursos limitados [DDT21;
NLQO25], y la personalización [LHBS21].

2. Protección frente a actores maliciosos. A diferencia del aprendizaje automático centrali-
zado, donde el entrenamiento se realiza en un sistema central bajo control administrativo, en
FL los clientes pueden comportarse de forma maliciosa y la comunicación con el servidor pue-
de quedar expuesta a oyentes curiosos. Se distinguen los ataques a la privacidad, en los que
observadores pasivos intentan extraer información sensible de las comunicaciones [TLC+20;
NLQO25], y los ataques adversariales, en los que actores manipulan el entrenamiento fede-
rado para alcanzar sus propios fines [BCMC19; YDK+24]. Las defensas posibles incluyen
restricciones en la comunicación, como el cómputo multipartito seguro [LZS+24], el uso
de privacidad diferencial [TLC+20], optimizadores robustos [YDK+24], e incentivos para
fomentar la participación de clientes confiables [STW19].

3. Equidad, que abarca tanto el desempeño justo —generalizado desde los conceptos tra-
dicionales de equidad algorítmica a un entorno distribuido— como la colaboración jus-
ta, que aborda la heterogeneidad en la contribución y motivación de los clientes a tra-
vés de esquemas de recompensa [SYL23; HYS+24; SACA24]. Las estrategias incluyen per-
sonalización [LHBS21], optimización con restricciones, evaluación de equidad en el servi-
dor [KPDG22], e incentivos [NLQO22].

4. Desafíos del sistema, que incluyen problemas derivados de comunicaciones no confiables,
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Figura 19. Resumen de los temas de investigación de esta tesis: en una arquitectura de aprendizaje
federado, el servidor central puede utilizar la «selección de clientes» para abordar la «heterogeneidad
de datos», reducir las «correlaciones espurias» no deseadas o mejorar la «equidad algorítmica».
Además, el servidor permite a los clientes emplear la heterogeneidad de modelos: los clientes pueden
optar por entrenar modelos de menor complejidad para mejorar su privacidad frente a ataques de
inferencia de pertenencia.

dispositivos que se desconectan, o con capacidades computacionales heterogéneas [BEG+19].
Las soluciones propuestas incluyen agrupar clientes con capacidades similares [ZZWC20],
reducir la carga computacional para clientes con recursos limitados [DDT21; NLQO25], y
usar esquemas de agregación robustos frente a fallos [MÖB22].
La tabla 1 resume estos desafíos y estrategias. En esta tesis, destacamos los conceptos

abordados con el objetivo de relajar las suposiciones fundamentales del aprendizaje federado
horizontal respecto a la heterogeneidad. Investigamos los efectos de la heterogeneidad de los
datos y diseñamos métodos que aprovechan tanto la heterogeneidad de modelos como las
diferencias en la participación de los clientes.

D.2 Antecedentes
En este capítulo presentamos la notación matemática utilizada en esta tesis, en particular en
lo que se refiere al aprendizaje federado (nos centramos en el aprendizaje federado horizontal
en todos los capítulos), la selección de clientes y los ataques de inferencia de pertenencia. En
los capítulos derivados de artículos de investigación, hemos actualizado las ecuaciones para
mantener una notación coherente en toda la tesis [NLQO22; NLQO25; NFN+25]. Seguimos
las prácticas comunes en FL, así como la notación empleada en el libro Deep Learning de
Ian Goodfellow, Yoshua Bengio y Aaron Courville [GBC16]. La tabla 2 resume la notación
utilizada a lo largo del documento.
Además, la figura 19 ilustra los retos y estrategias abordados en esta tesis.



104 D.2. ANTECEDENTES

D.2.1 Aprendizaje federado

El aprendizaje federado es una colaboración entre clientes, donde cada cliente k ∈ K, con
|K| = K, tiene acceso a un conjunto de datos Dk considerado privado. Los clientes colaboran
bajo la coordinación de un servidor central S para entrenar un modelo global f : X −→ Y
con parámetros θ ∈ Ω.
En el FL vertical, el espacio de entrada global es una combinación de las entradas de los

distintos clientes:
⋃

k∈KXk = X , con algún identificador compartido entre clientes, X id ⊆⋂
k∈KXk. En el FL horizontal, los clientes comparten el mismo espacio de entrada, es decir,

Xk = X . En este trabajo, nos enfocamos en el FL horizontal.
En este contexto horizontal, donde los clientes comparten el mismo espacio de entrada y

salida, consideramos D =
⋃K

i=1 Di como el conjunto de datos total y |D| como el número total
de muestras distribuidas entre los clientes. Cada par (x, y) ∈ Dk representa una muestra del
conjunto de entrenamiento del cliente k, y ` denota la función de pérdida. El objetivo del
servidor central es minimizar la función de coste global L(θ), dada por la ecuación (38).

mı́n
θ∈Ω

L(θ) = 1

|D|
∑
k∈K

∑
(x,y)∈Dk

`(y, f(x,θ)) (38)

Sin embargo, el servidor no tiene acceso directo a los datos privados de los clientes. Por
ello, distribuye los parámetros del modelo global θ a todos los clientes, quienes los utilizan
como punto de partida para calcular sus parámetros locales θk, minimizando su función de
coste local Lk(θk,Dk) como se muestra en la ecuación (39).

mı́n
θk∈Ω

Lk(θk,Dk) =
1

|Dk|
∑

(x, y) ∈ Dk`(y, f(x,θk)) (39)

Una vez que el servidor ha recopilado los parámetros locales θk, los agrega para obtener la
siguiente iteración del parámetro global θ, con el objetivo de seguir minimizando la función
de coste global L(θ). Cada iteración de actualización del modelo global se denomina ronda
de entrenamiento, y los parámetros en la ronda t se denotan como θt. Una estrategia de
agregación simple pondera los parámetros locales de cada cliente proporcionalmente al ta-
maño de su conjunto de datos, como se indica en la ecuación (40). El entrenamiento federado
continúa hasta que se alcanza la convergencia de L.

θt+1 =
∑
k∈K

|Dk|
|D|

θt
k (40)

La comunicación con cada cliente tras cada actualización local puede suponer una sobre-
carga significativa, especialmente cuando el número de clientes es elevado. Para mitigar este
problema, McMahan et al. [MMR+17] introdujeron el algoritmo FedAvg, en el cual los
clientes se comunican con el servidor solo después de e épocas locales. Desde el punto de vis-
ta del servidor, los parámetros globales se actualizan en rondas de entrenamiento t = 1, ..., T .
Desde el punto de vista de los clientes, cada ronda de entrenamiento t consiste en τ = 1, ..., e
épocas locales. Por lo tanto, los clientes realizan un total de eT épocas de entrenamiento.
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Figura 20. Diagrama de una ronda general de entrenamiento de aprendizaje federado con selección
de clientes. El servidor se comunica con el conjunto de clientes K para seleccionar el subconjunto
de clientes participantes St. Sólo este subconjunto se entrena con sus datos locales en la ronda t e
informa de sus parámetros al servidor. No todos los pasos son necesarios para todos los algoritmos.

D.2.2 Selección de clientes

En los capítulos 3 y 5, discutimos la selección de clientes, una técnica de FL en la que, en la
ronda t, en lugar de comunicarse con todos los clientes en K, el servidor elige un subconjunto
de clientes (St),

St ⊆ K (41)

para que realicen el entrenamiento local y actualicen el modelo global en función de su
respuesta.

FedAvg McMahan et al. [MMR+17] utiliza una selección aleatoria St de K ′ clientes par-
ticipantes en cada ronda de entrenamiento t, donde St ⊆ K y |St| = K ′, de modo que un
cliente k se selecciona con probabilidad p(k ∈ St) = K′

K
. Los pasos de actualización y agre-

gación de clientes se definen como θt+1
j = ClientUpdate(θt,Dj) y θt+1 = agg(θt+1

j , j ∈ St),
respectivamente.
Después del trabajo seminal de FedAvg, investigaciones posteriores han propuesto diversos

métodos de selección de clientes, la mayoría de los cuales siguen el flujo ilustrado en la
figura 2. En primer lugar, el servidor solicita a cada cliente un valor vk, que el cliente calcula
basándose en su información local Mk. Una vez que el servidor ha recibido los valores vk
de todos los clientes, selecciona un subconjunto St de ellos según la función h(v1, . . . , vK).
Los métodos de selección stateful también utilizan información previa sobre los clientes,
calculando vk a partir de la retroalimentación v′k y una función γ que toma en cuenta valores
anteriores del cliente. Después, el servidor difunde sus parámetros globales θt sólo a los
clientes seleccionados St, quienes actualizan sus modelos locales y devuelven sus parámetros
actualizados θt+1

k . Con esta información, el servidor calcula el nuevo parámetro global θt+1.
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Tabla 27. Dos grandes grupos de métodos FL con heterogeneidad del tamaño del modelo. (a)
Métodos FL con selección dinámica del tamaño del modelo de los clientes. Se supone que todos
los clientes tienen un modelo de la misma complejidad que el modelo del servidor. Estos métodos
no son aplicables a entornos en los que los clientes tienen restricciones de datos y cálculo, como es
nuestro caso. Por tanto, quedan fuera del ámbito de este documento. b) FL métodos en los que
los clientes tienen un tamaño de modelo fijo, que puede ser menor que el tamaño del modelo del
servidor. En este caso, los clientes aplican diferentes estrategias para seleccionar las porciones del
modelo del servidor que utilizarán en su entrenamiento. La fuente azul corresponde a los nuevos
métodos propuestos en esta tesis.

(a) Métodos FL con selección dinámica del tamaño del modelo
de cliente.

Métodos dinámicos de selección del tamaño
Random Gradiente

U
pd

at
e

Cada ronda Flado [LGZX23]
Cada batch FjORD [HLA+21]

(b) Métodos FL en los que los clientes tienen un tamaño de modelo fijo.

Estrategia de selección
Remuestreado (S) Fijado (F)

C
ob

er
tu

ra Un grupo (O) OSM, OSR HeteroFL [DDT21], OFR
Varios grupos(G) GSR GFM, GFR

Único (U) FDropout [CKMT18] UFR

D.2.3 Heterogeneidad de los modelos
El método descrito anteriormente sigue el enfoque estándar de FL horizontal: los clientes
y el servidor comparten la arquitectura del modelo, mientras mantienen los datos privados
localmente. En el capítulo 4, investigamos un caso más generalizado, la heterogeneidad de
modelos, en el que algunos clientes emplean un modelo con una complejidad reducida pero
con una arquitectura similar. A nivel abstracto, lo ilustramos como:

fk = f y θk ⊂ θ, (42)

lo que indica que la arquitectura del modelo del cliente k comparte la misma estructura
que el modelo global, aunque sus parámetros constituyen un subconjunto de los del servidor.
Suponemos una arquitectura FL heterogénea aplicada a una tarea de visión por compu-

tador, en la que tanto el modelo del servidor como el de los clientes son redes neuronales
convolucionales (CNN), con el mismo número de capas pero con distinto número de canales
por capa.
Sean θ los parámetros del modelo CNN del servidor, compuesto por L capas representadas

mediante matrices de pesos AN×M,l ∈ θ en cada capa l. En este escenario, la reducción del
modelo θk ⊂ θ en el cliente k se logra limitando el tamaño de cada capa l en la CNN del
cliente, según el siguiente principio: una capa en el servidor representada por la matriz de
pesos AN×M,l ∈ θ se reduce a un tamaño Nk ×Mk, donde Nk < N y Mk < M , de modo
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que cada celda a(ik,jk),lk en la matriz reducida ANk×Mk,l
k corresponde a una celda a(i,j),l en la

matriz del servidor AN×M,l:

∀ik, jk, l : a(ik,jk),lk ∈ Al
k,∃i, j : a(i,j),l ∈ A, a

(ik,jk),l
k = a(i,j),l (43)

En este contexto, la literatura propone dos grandes grupos de métodos para integrar los
modelos de los clientes en el del servidor, como se muestra en la tabla 27. El primer grupo,
ilustrado en la tabla 27(a), incluye algoritmos que seleccionan dinámicamente el tamaño de
los modelos de los clientes, aunque todos los clientes pueden manejar modelos del mismo
tamaño que el del servidor.
Estos métodos definen una función Ms(·) que determina las dimensiones N l

k × M l
k del

modelo del cliente k, es decir, qué subconjunto de la matriz de pesos Al
k se emplea en la

capa l del modelo θk. Entre los enfoques más representativos de esta categoría se encuentran
Flado[LGZX23] y FjORD[HLA+21]. Cabe señalar que estos métodos no son adecuados
para entornos con restricciones de datos y capacidad de cómputo por parte de los clientes,
como es el caso que abordamos. Por lo tanto, quedan fuera del alcance de esta tesis.
El segundo grupo, representado en la tabla 27(b) e ilustrado en la figura 8, abarca métodos

en los que los clientes tienen modelos de tamaño fijo, generalmente más pequeños que el del
servidor. Dado que trabajamos con CNNs, nos referimos a esta familia como métodos de
selección de canales. Los pesos de cada capa l en una CNN 2D están definidos por un tensor
de dimensiones (N,M,H,W )l, donde M y N representan los canales de entrada y salida de
la capa, y H y W son la altura y anchura del kernel, respectivamente.
En este contexto, AN×M,l denota la matriz de pesos de cada capa lineal l en el modelo

del servidor, donde M y N corresponden a las dimensiones de entrada y salida [ZTII88], y
a(i,j),l representa los pesos del kernel en la posición (i, j). Aquí, la función Ch(·) : AN×M,l →
ANk×Mk,l

k define el mapeo entre las celdas de la matriz de pesos del servidor Al y la matriz
Al

k más pequeña del cliente k en cada capa l. Sin pérdida de generalidad, se asume que los
canales están ordenados.

D.2.4 Heterogeneidad de los datos
En el capítulo 5, nos centramos en la heterogeneidad de los datos en el aprendizaje automá-
tico, específicamente en las correlaciones espurias, el desequilibrio de clases y el desequilibrio
de atributos.
Sea f : X → Y una función de predicción parametrizada por θ ∈ Ω, donde X es el espacio

de características, Y es el espacio de salida y Ω es el espacio de parámetros. Suponemos que
el espacio de características se compone de dos subespacios: X ⊆ X y × Xa, donde X y y
Xa representan los espacios de características intrínsecas a la tarea y de atributo, respecti-
vamente. La etiqueta de clase y ∈ Y de una muestra x := (xy,xa) está determinada por la
característica discriminativa xy, mientras que la etiqueta de atributo a ∈ A está determina-
da por la característica de atributo xa, donde A es el espacio de atributos. El conjunto de
datos de entrenamiento D está compuesto por n pares de muestras característica-objetivo,
D = {(xi, yi)}ni=1, donde cada muestra se extrae de forma independiente e idénticamente
distribuida según la distribución de entrenamiento Pr tr.
La heterogeneidad estadística de los datos surge cuando hay un cambio en las subpobla-

ciones, es decir, cuando la representación de estas difiere entre las distribuciones de entre-
namiento Prtr y de prueba Prte. Aquí, las subpoblaciones se definen por las combinaciones



108 D.2. ANTECEDENTES

de etiquetas objetivo y atributos, es decir, por el espacio Y ×A. Consideramos tres tipos de
heterogeneidad estadística en los datos:

Desequilibrio de clases (CI – Class imbalance)

La distribución de las etiquetas objetivo y difiere entre los conjuntos de entrenamiento y de
prueba, de modo que ciertas clases son mucho más frecuentes en el conjunto de entrenamien-
to, i.e.: Prtr(Y = y) � Prtr(Y = y′) para algunos y, y′ ∈ Y con y 6= y′. Este desequilibrio
puede producir un clasificador sesgado que tenga un mal desempeño en muestras pertene-
cientes a la clase minoritaria.

Desequilibrio de atributos (AI – Attribute imbalance)

La probabilidad de aparición de un determinado atributo a′ ∈ A en el conjunto de entrena-
miento es mucho menor que la de otros atributos a, y esta disparidad en la prevalencia no
se mantiene en la distribución de datos de prueba, i.e.: Prtr(A = a) � Prtr(A = a′). Este
desequilibrio puede generar un clasificador sesgado hacia el atributo mayoritario a.

Correlación espuria (SC – Spurious correlation)

Existe una dependencia estadística entre la clase Y y el atributo A en la distribución de
entrenamiento que no se mantiene en la distribución de prueba, i.e.: Prtr(Y = y | A = a) �
Prtr(Y = y) � Prtr(Y = y | A = a′), para algún y ∈ Y y a, a′ ∈ A. Esta dependencia
espuria puede hacer que un clasificador funcione bien en muestras donde la relación espuria
se mantiene (e.g., (Y = y, A = a)), pero tenga un rendimiento inferior donde dicha relación
no se presenta (e.g., (Y = y, A = a′)).

D.2.5 Privacidad
En el capítulo 4, analizamos la privacidad de los modelos de aprendizaje federado (FL).
Existen dos enfoques principales para evaluarla: el uso de aproximaciones matemáticas para
medir la privacidad diferencial [Dwo06], o la evaluación de la privacidad frente a ataques
específicos. Los ataques pueden clasificarse según sus objetivos, como replicar el comporta-
miento del modelo objetivo o reconstruir información a partir de los datos de entrenamien-
to [LDS+21]. En este trabajo, empleamos ataques de inferencia de pertenencia (membership
inference attacks, MIA), en los que el objetivo de un atacante curioso es determinar si un
par de entrada-salida formaba parte de los datos de entrenamiento del modelo observado:

A (M(f,θ,D), (x, y)) : (x, y) ∈
?
D. (44)

Nos centramos en ataques de caja negra, es decir, aquellos en los que el atacante no tiene
acceso directo a los parámetros del modelo θg ni a la arquitectura f , pero puede consultar
el modelo con instancias de datos y observar su predicción ŷ. El objetivo del atacante es
construir un modelo A que prediga si una instancia de datos (x, y) pertenecía al conjunto
de entrenamiento Dk del modelo M(f,θk,Dk) correspondiente al cliente c ∈ K. Además,
consideramos ataques pasivos, en los que el atacante se limita a observar el comportamiento
del sistema sin interferir en él.
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Formalmente, el modelo de un atacante perfecto A se define como:

A (f,θk, (x, y)) =

{
1, si (x, y) ∈ Dk,

0, en otro caso.
(45)

Estudiamos el rendimiento de tres variantes de MIA pasivos y de caja negra, que se resumen
a continuación y se describen en mayor detalle en sección 4.5:

• Yeom attack, donde el atacante elige un umbral global ν y considera como miembros
del conjunto de entrenamiento, en cada cliente, aquellas instancias con una pérdida
inferior a ν[YGFJ18].

• LiRA attack, donde el atacante dispone de un conjunto de datos auxiliar Da y entrena
modelos sombraMsw(f,Dsw) sobre subconjuntos aleatorios Dsw ⊂ Da. Una instancia se
predice como miembro si la puntuación de confianza del modelo objetivo se asemeja a la
distribución de confianza de las instancias miembro en los modelos sombra[CCN+22].

• tMIA attack, que utiliza destilación de conocimiento para recopilar trayectorias de
pérdida con el fin de identificar qué instancias pertenecen al conjunto de entrenamien-
to [LZBZ22]. Este ataque se basa en que las trayectorias de pérdida tras cada época
de entrenamiento discriminan mejor entre instancias miembro y no miembro que la
pérdida final del modelo.

D.2.6 Equidad
La equidad algorítmica aborda las implicaciones éticas y sociales de los sistemas automati-
zados de toma de decisiones. Dado que los sistemas de aprendizaje automático se emplean
cada vez más en ámbitos sensibles como la sanidad, las finanzas y la aplicación de la ley,
garantizar su imparcialidad resulta esencial para evitar la perpetuación de prejuicios sociales.
Mientras que el concepto de equidad individual define la equidad como el trato similar

a individuos similares, el concepto de equidad de grupo se basa en la definición de grupos
poblacionales y exige un trato igualitario entre ellos [BHN23]. Los grupos pueden definirse
en función de atributos protegidos como la etnia, el sexo o la edad. Estas dos nociones de
equidad suelen entrar en conflicto, lo que refleja las compensaciones y tensiones inherentes
a la cuantificación de la equidad.
Para medir la equidad de grupo en el aprendizaje automático, es fundamental considerar

el entorno social en el que se aplica un modelo entrenado. En este contexto, la literatura
propone diversas métricas de equidad [VR18]. En sección 6.2.3, revisamos varios algoritmos
de aprendizaje federado justos para identificar las métricas de equidad más comunes en este
campo. Según nuestra revisión, estas métricas son: la igualdad de oportunidades,

Pr(Ŷ = 1|Y = 1, A = 0) = Pr(Ŷ = 1|Y = 1, A = a), ∀a ∈ A

y la paridad demográfica,

Pr(Ŷ = 1|A = 0) = Pr(Ŷ = 1|A = a),∀a ∈ A.

Utilizamos estas métricas para evaluar la equidad de los algoritmos de aprendizaje federado
en el capítulo 6.
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D.3 Estructura de la tesis

En el capítulo 1, introducimos los conceptos básicos del aprendizaje federado, un enfoque de
aprendizaje automático centrado en la privacidad de los datos, mediante el diseño de un sis-
tema distribuido en el que los nodos locales, también conocidos como clientes, mantienen sus
datos privados y solo comparten los parámetros del modelo con un servidor que orquesta el
entrenamiento. Analizamos los principales tipos de aprendizaje federado, como el horizontal
y el vertical, así como los entornos multisilo y multidispositivo. Resumimos los principales
retos del aprendizaje federado y los métodos comúnmente utilizados por la comunidad para
abordarlos.
En el capítulo 2, presentamos la notación y los antecedentes matemáticos, así como los

temas tratados a lo largo de esta tesis. Explicamos el concepto de aprendizaje federado e
introducimos la selección de clientes, un método para reducir los costes computacionales y
de comunicación en FL. Resumimos los fundamentos de la heterogeneidad de modelos y da-
tos en sistemas distribuidos. Asimismo, introducimos conceptos del aprendizaje automático
tradicional, como la privacidad de los datos y la equidad algorítmica de grupo.
En el capítulo 3, nos centramos en la selección de clientes. La necesidad de manejar un gran

número de clientes fue la motivación original para aplicar este enfoque en FL. Los primeros
métodos de FL [MMR+17] utilizaban una selección aleatoria uniforme para limitar el número
de clientes con los que el servidor se comunica en cada ronda. Trabajos posteriores demos-
traron que estos métodos pueden mantener el rendimiento del modelo, mejorar la tasa de
convergencia del entrenamiento [NY19], reducir el número de rondas necesarias [GMB+19] o
mejorar la equidad en datos desbalanceados [LSBS20]. Proponemos una taxonomía de selec-
ción de clientes que categoriza los métodos según el objetivo, las capacidades de los clientes
y los requisitos de comunicación. Un ejemplo es la heterogeneidad de modelos, propuesta
originalmente para permitir la participación de clientes con menor capacidad computacional
entrenando redes neuronales más pequeñas [DDT21]. Las principales contribuciones de este
capítulo se presentan en [NLQO22].
En el capítulo 4, diseñamos un conjunto de métodos basados en la heterogeneidad de mode-

los para abordar el tema de la privacidad. El FL permite entrenar modelos sin necesidad de
transferir datos sin procesar desde los dispositivos al servidor central. Se considera una solu-
ción que preserva la privacidad desde su diseño, ya que los datos nunca abandonan los clientes
y solo se comparten los parámetros del modelo, lo cual es crucial en escenarios prácticos co-
mo la salud [XGS+21; LWC+22], las finanzas [LTJZ20; BP20] o las interfaces inteligentes
de teléfonos inteligentes [APA+22]. Sin embargo, trabajos recientes han demostrado que se
puede inferir información sensible a partir de los parámetros del modelo compartidos [FJR15;
CLE+19]. Una de las razones es que los modelos complejos tienden a sobreajustar los da-
tos [YGFJ18]. Por ello, investigamos si la heterogeneidad de modelos puede ayudar a mitigar
la pérdida de privacidad, permitiendo que los clientes con menos datos entrenen modelos más
pequeños. Este capítulo se basa en [NLQO25].
En el capítulo 5, abordamos el desafío de la heterogeneidad de datos en los clientes. En

escenarios reales, los datos de los clientes están moldeados por factores locales como compor-
tamientos de usuario [TYCY22], entornos específicos de recolección [FMO20; YAE+18], y
sesgos culturales o socioeconómicos [BCM+18], lo que resulta en heterogeneidad estadística
de los datos, donde estos son no-IID y desbalanceados. Esto dificulta la generalización del
modelo del servidor y reduce su rendimiento [LHY+20; CCC22]. Proponemos FedDiverse,
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un novedoso método de selección de clientes que aprovecha la heterogeneidad para reducir
las correlaciones espurias aprendidas por el modelo. La idea es que, si muchos clientes tie-
nen datos similares, seleccionar aquellos con datos diferentes puede ayudar a reducir esas
correlaciones. Este capítulo se basa en [NFN+25].
Finalmente, en el capítulo 6, exploramos las capacidades de FedDiverse para lograr

equidad grupal en FL [SYL23]. Adaptamos la selección de clientes de FedDiverse para
mejorar la equidad entre clientes afectados por sesgos en los datos de entrenamiento. El
objetivo es seleccionar clientes diversos para aumentar la participación de aquellos con datos
valiosos pero subrepresentados.

D.4 Conclusión

D.4.1 Resumen de las principales contribuciones

El aprendizaje federado es un campo emergente con repercusiones en diversos ámbitos. La
variada lista de retos y soluciones propuestas en FL hace que la comparación y evaluación de
nuevos métodos sea una tarea compleja. Para simplificar esta tarea, en el capítulo 3 hemos
propuesto una nueva taxonomía de selección de clientes en FL que permite la categorización
y comparación de diferentes métodos. Un supuesto clave pero poco realista en FL es la ho-
mogeneidad de los clientes y sus datos. En esta tesis, relajamos este supuesto y contribuimos
al campo del aprendizaje federado con varias aportaciones novedosas que permiten entornos
heterogéneos.
Comenzamos con la heterogeneidad de modelos en el capítulo 4, donde investigamos arqui-

tecturas FL en las que los clientes aprenden modelos de diferentes complejidades según sus
capacidades de cómputo. Presentamos una taxonomía novedosa de métodos de integración
de modelos y realizamos un estudio en profundidad de las implicaciones para la privacidad
de dichas estrategias. En el caso IID entre los clientes, encontramos que la estrategia de
integración de modelos puede tener un impacto significativo en la privacidad. Sin embargo,
las configuraciones no IID suponen un reto para los métodos más avanzados y requieren más
investigación.
Abordamos este reto en el capítulo 5, donde proponemos FedDiverse, un novedoso al-

goritmo de selección de clientes que aprovecha la heterogeneidad de datos —a saber, el des-
equilibrio de atributos, el desequilibrio de clases y las correlaciones espurias— para mitigar
las dificultades que surgen al disponer de datos no IID.
Por último, en el capítulo 6, exploramos una aplicación socialmente impactante de Fed-

Diverse, investigando cómo su estrategia de selección de clientes puede aprovecharse para
mejorar la equidad grupal en FL. En concreto, examinamos situaciones en las que los datos
se distribuyen de forma heterogénea entre grupos demográficos o socialmente definidos, como
la etnia, el sexo o la región geográfica, y mostramos cómo FedDiverse puede mitigar el
rendimiento dispar del modelo en estos grupos. Mediante la participación selectiva de los
clientes, nuestro método promueve la representación equitativa en el proceso de aprendizaje,
contribuyendo así a modelos de FL más inclusivos y justos.
En resumen, esta tesis aporta contribuciones clave en el campo del aprendizaje federado

con heterogeneidad de clientes o datos para obtener modelos robustos, precisos y justos que
respeten la privacidad de los participantes.
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D.4.2 Limitaciones y retos
El aprendizaje federado es un campo de investigación que requiere mucha ingeniería. Como
toda investigación en FL, la nuestra también está limitada por decisiones de diseño, inclu-
yendo: (1) Limitamos nuestros experimentos en el capítulo 4 a ataques que ocurren en la
última actualización del modelo del cliente; (2) Medimos la privacidad mediante ataques de
inferencia de membresía; (3) En el capítulo 5, limitamos los experimentos a distribuciones
de datos y conjuntos de datos pequeños pero bien controlados; y (4) Diseñamos nuestros
métodos de selección de clientes y agnósticos al modelo para que sean modulares y fáciles
de combinar con marcos existentes. Sin embargo, esto conlleva un coste en competitividad
frente a métodos más complejos diseñados específicamente para la tarea.

D.4.3 Futuras líneas de investigación
Una línea de investigación futura se relaciona con el trabajo descrito en los capítulos 5 y 6.
La investigación actual sobre datos no IID en FL se centra en la construcción de métodos
generales y robustos. En este trabajo adoptamos un enfoque diferente, diseñando experi-
mentos con control de la heterogeneidad estadística en los conjuntos de datos. Consideramos
que esta investigación puede ampliarse para desarrollar métricas que midan la no-IID es-
perada en los datos distribuidos antes del entrenamiento, lo que permitiría diseñar mejores
métodos FL específicos para cada tarea. Además, investigaciones futuras futura deberían
incluir un análisis más profundo de la interacción entre los diferentes objetivos en FL, como
la privacidad (en el capítulo 4) y la equidad (en el capítulo 6).
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