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ABSTRACT Federated Learning (FL) has been proposed as a privacy-preserving solution for distributed
machine learning, particularly in heterogeneous FL settings where clients have varying computational
capabilities and thus train models with different complexities compared to the server’s model. However,
FL is not without vulnerabilities: recent studies have shown that it is susceptible to membership inference
attacks (MIA), which can compromise the privacy of client data. In this paper, we examine the intersection
of these two aspects, heterogeneous FL and its privacy vulnerabilities, by focusing on the role of client
model integration, the process through which the server integrates parameters from clients’ smaller models
into its larger model. To better understand this process, we first propose a taxonomy that categorizes
existing heterogeneous FL methods and enables the design of seven novel heterogeneous FL model
integration strategies. Using CIFAR-10, CIFAR-100, and FEMNIST vision datasets, we evaluate the privacy
and accuracy trade-offs of these approaches under three types of MIAs. Our findings reveal significant
differences in privacy leakage and performance depending on the integration method. Notably, introducing
randomness in the model integration process enhances client privacy while maintaining competitive
accuracy for both the clients and the server. This work provides quantitative light on the privacy-accuracy
implications client model integration in heterogeneous FL settings, paving the way towards more secure and
efficient FL systems.

INDEX TERMS Federated learning, membership inference attack, model complexity, privacy.
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approving it for publication was Li Zhang .

I. INTRODUCTION
Deep neural networks require access to large amounts of
training data to achieve competitive performance. This data
dependency raises concerns regarding the safeguarding of
sensitive information that might be encapsulated in the data.
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Federated Learning (FL) has been proposed as a potential
solution to mitigate such concerns [1], [2]. FL consists
of a distributed machine learning approach that enables
training models without the need to transfer the raw data
from different devices or locations (clients) to a central
server. In each iteration of the learning process, the server
shares the parameters of the learned global model with the
clients which perform local computations on their respective
data to update their local parameters. Their updated model
parameters are then sent back to the server, which aggregates
the changes made by the clients to improve the global
model.

Heterogeneous Federated Learning [3] refers to a more
complex and realistic variant of FL where the participating
clients have diverse conditions in terms of data, computing
resources and model architectures. In this paper we focus on
one type of heterogeneity namely model size heterogeneity,
where different clients learn models of the same type but with
varying complexities to adapt to their data and computational
capabilities.1

Several approaches have been proposed in the literature to
implement FL with model size heterogeneity [4], [5], [6], [7].
However, they are generally seen as independent methods.

Furthermore, FL is regarded as a privacy-preserving
solution by design, given that the raw data never leaves the
clients and only the model parameters are shared with the
central server, which is of great importance in many practical
scenarios, including healthcare [8], [9] and finance [10], [11],
or intelligent smartphone interfaces [12]. However, recent
work has shown that sensitive information about the original
data can be inferred by analyzing the model parameters that
are shared in the communication rounds [13], [14].
To the best of our knowledge, no study has explored the

privacy implications of different heterogeneous FL methods.
In this paper, we fill this gap by providing the following
4 contributions:

(1) We are the first to frame existing heterogeneous FL
methods in a novel taxonomy according to the adopted
strategies to integrate the clients’ models in the server’s
model;

(2) This taxonomy leads to the identification of seven
new heterogeneous FL methods to perform client model
integration in the server;

(3) We empirically evaluate the 7 proposed heterogeneous
FL approaches and 2 state-of-the-art methods –namely
HeteroFL and FDropout– from the perspective of server
accuracy, and client accuracy and privacy on three widely
used image datasets;

(4) We find that randomness in the strategy used to
perform clientmodel integration enhances the clients’ privacy
while keeping competitive performance on the server’s side.
In sum, our work provides the first empirical evidence on the

1In the following, we will use the term heterogenous FL to refer to
heterogenous FL methods where the clients learn models of the same
architecture but different complexities than the server’s model.

privacy-accuracy implications of client model integration in
heterogeneous FL.

II. RELATED WORK
In this section, we present the most relevant previous work on
FL with model heterogeneity and on privacy attacks in FL.

A. MODEL HETEROGENEITY IN FL
In traditional FL all clients use the same model architecture
as the server. However, this approach is unrealistic when
clients have different computational and communication
capabilities. FL with heterogeneous client models has been
proposed to address this limitation as it enables training a
diversity of models in the clients according to their capacities.
There are two broad types of heterogeneous FL methods:

1) KNOWLEDGE TRANSFER
In the first category, clients leverage a public dataset to
communicate via knowledge distillation, and learn different
models without sharing a global model with the server [15],
[16], [17]. While this design enables clients to train different
model architectures without limitations, its disadvantage is
the lack of a competitive model in the server.

2) MODEL SIZE HETEROGENEITY
The second category consists methods with partial archi-
tecture sharing. For example, resource-restricted clients can
learn a less complex model which is a smaller version of the
server’s model. In this case, both the server and client-side
models are trained as part of the federation [4], [5], [18]. In the
context of deep neural networks, the model compression on
the clients side can be achieved by training models with
fewer [18] or with simpler [4], [5], [6], [7], [19] layers. Our
work focuses on heterogeneous FL methods in this category.

B. MEMBERSHIP INFERENCE ATTACKS IN FL
While FL was initially motivated by the desire to preserve
client data, recent studies have revealed that federated
systems remain vulnerable to privacy attacks, specifically
in the form of membership attacks [20], [21], [22], [23],
[24]. To tackle this limitation, several privacy-preserving
approaches for FL have been proposed to date, including local
differential privacy [20], [21] and data augmentation [22],
[23]. In our work, we focus on membership inference attacks
(MIAs) and their implications on heterogeneous FL. InMIAs,
the attacker’s goal is to determine whether an individual data
point was part of the dataset used to train the target model.
While MIAs expose less private information than other
attacks, such as memorization attacks, they are still of great
concern as they constitute a confidentiality violation [25].
Membership inference can also be used as a building block
for mounting extraction attacks for existing machine learning
as a service systems [14]. Several types of MIAs have been
proposed in the literature [26], [27]. In this work, we focus
on black-box attacks where the attacker does not have full
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access to themodels but is able to query them, which is amore
realistic scenario than white-box attacks that assume full
access to the models. We analyze the impact of three popular
MIAs that use complementary strategies and hence offer a
comprehensive evaluation of client privacy vulnerabilities in
heterogeneous FL settings. Namely, the Yeom [28], LiRA
[29], and tMIA [30] attacks. The Yeom attack is a simple, yet
effective loss-based attack; LiRA is a good representative of
shadow model-based techniques; and tMIA is a state-of-the-
art knowledge distillation-based method to approximate the
inspected model.

While it is known that the larger the complexity of a
model, the higher its vulnerability against MIAs [9], [28],
as illustrated by Figure 4 and its corresponding section in
the Appendix, we are not aware of any study of the impact
on privacy of the model integration strategy adopted by the
server in a heterogeneous FL setting.

III. A TAXONOMY OF HETEROGENEOUS FL METHODS
In this section, propose a novel taxonomy of heterogenous FL
methods which allows to both compare existing methods and
identify seven new methods.

TABLE 1. Two broad groups of FL methods with model size
heterogeneity. a) FL methods with dynamic selection of the clients’ model
size. All clients are assumed to hold a model of the same complexity as
the server’s model. These methods are not applicable to settings where
clients have data and computation constraints, as it is our case. Thus,
they are beyond the scope of this paper. b) FL methods where the clients
have a fixed model size, which can be smaller than the server’s model
size. In this case, the clients apply different strategies to select the
portions from the server’s model to be used in their training. The blue
font corresponds to the newly proposed methods in this paper.

A. FORMULATION
We assume a heterogenous FL architecture in a computer
vision task, where both the server and clients’ models are
Convolutional Neural Networks (CNNs) with a different
number of channels in each layer, but the same number of
layers.

Let θ denote the model parameters of the server’s CNN,
composed of L layers represented by a weight matrix
AN×M ,l ∈ θ at each layer l. In such a setting, model reduction
θc ⊂ θ in client c is achieved by limiting the size of each layer
l in the client’s CNN according to the following principle: a

layer in the server represented by weight matrix AN×M ,l ∈ θ

is reduced to size Nc × Mc, where Nc < N and Mc < M
such that every cell a(ic,jc),lc in the reduced matrix ANc×Mc,l

c
corresponds to a cell a(i,j),l in the server’s matrix AN×M ,l :

∀ic, jc, l : a(ic,jc),lc ∈ Alc,

∃i, j : a(i,j),l ∈ A, a(ic,jc),lc = a(i,j),l (1)

In this scenario, there are two broad sets of methods
proposed in the literature to perform client model integration
in the server, as reflected in Table 1. The first group of
methods, shown in Table 1(a), corresponds to algorithms that
dynamically select the size of the clients’ models but where
all the clients are able to hold models of the same size as the
server’s model. Thus, these methods define anMs(·) function
that determines theNl

c×Ml
c dimensions of the client’s cmodel

to be used of the weight matrix Alc in layer l of their model
θc. Popular approaches in this category include Flado [7] and
FjORD [6]. Note that they are not applicable to settings where
clients have data and computation constraints, as it is our case.
Hence, they are out-of-the-scope of this paper.

The second group, depicted in Table 1(b) and illustrated
in Figure 1, corresponds to methods where the clients have
fixed-size models that are typically smaller than the server’s
model. As we are considering CNNs, we refer to this family
of methods as channel selection methods. The weights of
each layer l in a 2D CNN are defined by an (N ,M ,H ,W )l

dimensional tensor, where M and N are the input and output
channels of the layer and H and W are the height and width
of the kernel, respectively. Thus, AN×M ,l denotes the weight
matrix of each linear layer l in the server’s model, where M
and N are the input and output data dimensions [31], and
a(i,j),l represents the kernel weights of the (i,j) position. In this
case, Ch(·) : AN×M ,l → ANc×Mc,l

c determines the mapping
between the cells of the server’s weight matrix Al and the
client’s c smaller matrix Alc for each layer l. Without a loss of
generalization, we assume that the channels are sorted.

B. A TAXONOMY OF HETEROGENEOUS FL METHODS
Figure 1 illustrates the proposed taxonomy of heterogeneous
FL methods, according to three dimensions that characterize
how the clients’ models are integrated into the server’s model.

1) CLIENT GROUPING
The first dimension of the taxonomy refers to client
grouping, classifying the methods in three classes: one
group (O); several groups (G); and unique (U), depending
on the number of channel sets used to train the models
in the clients with smaller models than the server’s model.
In one group, all the clients use the same set of channels.
In several groups, clients are clustered in groups such that
clients in the same group use the same set of channels
(Figure 1a) shows an example with 4 groups). Unique
corresponds to federations where every client has their set of
channels selected individually, illustrated by the rectangles
with different colored patterns in Figure 1(a).
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2) DYNAMICS
The second dimension (Figure 1b) characterizes the dynam-
ics of the channel selection approach and defines two types:
fixed (F) methods when the channel sets are defined at the
beginning of the training, and resampled (S) methods when
the channel sets are selected in each training round, t1 . . . tN .
The Figure illustrates the dynamics with 4 clients and in three
training rounds t1 to t3. The clients’ models are represented
by rectangles with different colored patterns which represent
the selection of channels from the server’s model. In the fixed
case, the clients get a variation of the same channels from
the server in every round of training (hence the patterns in
the rectangles are the same in the different training rounds),
while when the channel sets are resampled, they get a new
set of channels from the server every round, and hence the
patterns change in each training round ti.

3) POLICY
Finally, the third dimension (Figure 2c) concerns the policy
for channel integration of the clients’ models in the server’s
model and consists of two kinds: submatrix (M) methods if
the selected channels are groups of adjacent channels and
random (R) methods if the channels are selected randomly.
In the Figure, with the submatrix policy the models from each
of the 4 clients are integrated in non-overlapping sections of
the server’s matrix whereas with the random policy different
portions of the clients’ models are integrated in different
sections of the server’s model.

C. EXISTING HETEROGENOUS FL ALGORITHMS
The proposed taxonomy enables us to characterize existing
methods in heterogeneous FL.

1) FDropout
In FDropout [4], the clients learn a CNN with the same
architecture but fewer parameters (smaller weight matrices)
than the server, and the server randomly drops a fixed number
of units from each client [32], mapping the sparse model to a
dense, smaller network by removing the dropped weights.

While the original formulation of FDropout used the
same model size in all the clients, an extended variation
was proposed by [6] that allows clients to have different
model sizes and hence falls within the heterogenous FL
definition used in this paper. In this variation, in each layer l
of the server’s model, randomly selected cells, ai,j,l and their
associated rows i and columns j are dropped from the weight
matrix. The size of the client’s model weight matrix in each
layer can be set by the number of dropped rows and columns:
|Drop(Nl,Nc,l)| = Nl − Nc,l and |Drop(Ml,Mc,l)| =
Ml − Mc,l , where Drop(n, k) selects k elements from
n randomly. Therefore, for each layer l of the server’s
model, in FDropout:

ai,j,l ∈ Ac : i /∈ Drop(Nl,Nc,l), j /∈ Drop(Ml,Mc,l). (2)

According to our taxonomy, FDropout corresponds to a
USR method because each client has a unique (U), random

(R) set of channels that are resampled (S) in each training
round.

2) HeteroFL
HeteroFL [5] follows a similar idea as FDropout but with
two key differences when selecting the channels in the clients
with smaller models than the server: 1) all the clients learn
from the same portion of the server’s model; and 2) instead
of randomly dropping cells, the clients always keep the top-
left subset of the server’s weight matrix for each layer in the
network. Thus, in HeteroFL, the weight matrix Alc of size
Nc ×Mc in layer l and client c corresponds to the top-left
sub-matrix of the server’s weight matrix Al of size N ×M :

∀ai,jc ∈ Ac, ai,j ∈ A : ai,jc = ai,j, i = 1..Nc, j = 1..Mc. (3)

According to our taxonomy, HeteroFL corresponds to
an OFM method as there is only one client group (O) with
fixed channels (F) that correspond to a sub-matrix (M) of the
server’s weight matrix.

D. NEWLY PROPOSED HETEROGENEOUS FL METHODS
In addition to HeteroFL and FDropout, our taxonomy
enables us to propose seven new methods for heterogeneous
FL. In the following and for simplicity, we drop the
superscript l to denote the layer in the network.

1) GFM: In the GFM method, instead of selecting the
top-left sub-matrix of the server’s model (as in
HeteroFL), the clients are randomly placed in N
groups. In the following, we present the example where
N = 4. Thus, the clients are assigned to one of 4 groups,
O,P,Q,R. The client’s channels are selected based
on their group’s policy, such that each cell from the
original matrix is assigned to one cell in one of the four
group.
The matrix assigned to group O is the same as the
HeteroFL sub-matrix: it always selects the top-
left cells of the server’s matrix. Clients in group R
are assigned the bottom-right cells. The sub-matrices
assigned to clients in groupsO and P alternate between
the bottom-left and the top-right cells. This is due to
a restriction on how the input-output channels need
to be connected. The top-right sub-matrix corresponds
to selecting the second half of the input channels
and the first half of the output channels. Therefore,
if in layer l the client selected the top-right sub-
matrix, in the next layer it has to select one of the
left sub-matrices, as they are the ones with the first
half of the input channels. Note that this approach can
be generalized to 9, 16,. . . groups, depending on the
number of clients and the desired model size reduction.
The cell assignment in the sub-matrices of each of the
four groups is summarized in Equation 4 below.
The top portion of Figure Figure 2 illustrates the GFM
method. As seen in the Figure, the clients are grouped
into four groups (G) with fixed channel sets (F) and
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FIGURE 1. Proposed taxonomy of channel selection methods for heterogeneous FL architectures. The server and the clients learn
the same type of models (e.g. CNNs) but with different numbers of units. The server selects which subset (channels in the case of a
CNN) of its model is used to train the clients’ models. We refer to this mechanism as client model integration. The taxonomy
considers three dimensions: a) The groups of clients learning from the same server channels: one group (O), four groups (G), all
unique clients (U); b) Dynamics in channel group selection: fixed at the beginning of the training (F), sampled in each round (S); and
c) Policy for channel selection from the server’s model: according to a submatrix structure (M), randomly (R). The top of the figure
illustrates the taxonomy with one type of the proposed heterogeneous FL methods, namely GFM: there are four groups of clients
(G) indicated by different colors, which use fixed channel sets (F) that are integrated in the server’s model as submatrices (M).

integrating their models as submatrices of the server’s
model (M).

2) GFR:Compared to GFM, GFR differs in the set of chan-
nels in AO,AP,AQ, and AR. Instead of selecting the
first or the lastNc andMc channels, the output channels
are selected randomly, while the input channels match
the output channels of the previous layer.

a(i,j),l ∈





AO, if 1 ≤ i ≤ Nc, 1 ≤ j ≤ Mc

AP, if 1 ≤ i ≤ Nc,M −Mc ≤ j ≤ M , l odd,
or N − Nc ≤ i ≤ N , 1 ≤ j ≤ Mc, l even

AQ, if N − Nc ≤ i ≤ N , 1 ≤ j ≤ Mc, l odd,
or 1 ≤ i ≤ Nc,M −Mc ≤ j ≤ M , l even

AR, if N − Nc ≤ i ≤ N ,M −Mc ≤ j ≤ M

(4)

3) GSR: GSR is similar to GFR but in this case the set of
channels are drawn randomly for each group in every
round of training.

4) OSM: OSM generalizes HeteroFL by leveraging the
channel sets {AO,AP,AQ,AR} introduced in GFM, but
in each training round all clients are using one of the
4 groups.

5) OFR: OFR is a variation of HeteroFLwhere instead
of the top-left subset of channels in the server’s weight

matrix, the clients all get the same random set of
channels for every round of training.

6) OSR: In OSR, the set of channels are drawn randomly
in every training round, but all clients use the same
set.

7) UFR: Finally, UFR selects C unique sets of channels
from the server’s model which are defined at the
beginning of the training and clients have access to one
of the sets according to a new permutation every round.
Therefore, in a federation with N clients, the clients
receive the parameters from the same set of channels
every N rounds.

We are interested in shedding light on the server accuracy
and client accuracy-privacy trade-off of these 9 methods to
perform client model integration in FL with heterogeneous
models. Specifically, we focus on membership inference
attacks or MIAs, as they represent a critical privacy threat
in Federated Learning. MIAs allow adversaries to determine
whether a particular data point was part of a client’s training
set by exploiting patterns in model updates or predictions.
Given the diversity in model sizes in heterogeneous FL,
the susceptibility of smaller, resource-constrained models to
such attacks may differ from that of more complex models.
By analyzing the performance of MIAs across methods to
achieve heterogeneity in FL, we aim to understand the extent
the model size in the client and the model integration strategy
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impact both privacy and accuracy. This analysis is crucial
for developing robust FL frameworks that balance privacy
guarantees andmodel performance in real-world settingswith
heterogeneous devices.

IV. MEMBERSHIP INFERENCE ATTACKS IN FL
In Federated Learning, membership inference attacks can
occur on the client or the server sides. In this paper, we focus
on client attacks which occur when the attacker targets the
client’s model, (fc, θ tc), for client c = 1, . . . ,N in training
round t = 1, . . . ,T . In a setting where all clients participate
in the federation (stateful setting [33]), the attacker can collect
a set of k ≤ T client updates 2c = {θ τ1

c , . . . , θ τk
c }, τi ∈

{1, ..,T }; Specifically, we consider client-side attacks which
take place on the last parameter update from the client to the
server θTc where the attacker aims to identify instances of the
client’s dataset Dc for client c.

Furthermore, we focus on black-box attacks, i.e. attacks
where the attacker has no direct access to the model’s
parameters θg and architecture f , but it can query the
model with data instances to get the model prediction
ŷ. The attacker’s purpose is to build an attacker model
A that predicts, for data instance (x, y), if it was part
of the training data Dc of model M (f , θc, Dc), for client
c = 1, . . . ,N . Finally, we consider passive attacks where
the attacker observes the behavior of a system without
altering it.

Formally, the perfect attacker’s model A is given by:

A(f , θc, (x, y)) =
(
1, if (x, y) ∈ Dc,M (f , θc, Dc)
0, otherwise.

(5)

We study the performance of three different client-side,
passive and black-box MIAs which are summarized below
and are described in more detail in the Appendix.

• Yeom attack, where the attacker chooses a global
threshold ν, and selects every data instance with a loss
lower than ν as a member of the training dataset in each
client [28].

• LiRA attack, where the attacker has access to an aux-
iliary dataset Da and trains shadow modelsMsw(f , Dsw)
on random subsets of this dataset Dsw ⊂ Da. The data
instance is predicted to be a member of the client’s
training set if the target model’s confidence score fits
into the sample’s confidence score distribution in the
shadow models [29].

• tMIA attack, which leverages knowledge distillation
to collect loss trajectories to identify member and
non-member instances [30]. This attack builds on the
idea that the snapshots of the loss after each training
epoch (loss trajectory) can separate the member from
non-member instances better than only using the final
model’s loss.

The selected attacks represent a distinct approaches to
MIAs, ensuring a comprehensive evaluation and coverage
of a variety of methodologies: (1) the Yeom attack is
a simple, popular, loss-based and interpretable method;

(2) LiRA is a good representative of shadow model-based
techniques, which leverage synthetic data and advanced
likelihood estimation methods to achieve high accuracy and
scalability; and (3) tMIA is a state-of-the-art knowledge
distillation-based method.

A. PERFORMANCE METRICS OF MIAs
Three commonly used metrics to determine the performance
of MIAs include:

• AUC (Area under the curve): This metric represents
the area under the Receiver Operating Characteristic
(ROC) curve, which plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various thresh-
old settings. AUC ranges from 0.5 (random guessing) to
1.0 (perfect prediction). A higher AUC indicates better
discrimination between members and non-members in
the dataset and hence better performance of the MIA.

• Attack advantage: This measures how much better the
attack model performs compared to random guessing.
It is calculated as double the difference between the
attack model’s accuracy and 0.5 (the accuracy of a
random classifier). A higher attack advantage indicates
the attack is more effective at distinguishing members
from non-members than a random model.

• TPR@FPR0.1:This is the True Positive Rate (or recall)
when the False Positive Rate is fixed at 0.1 (10%).
It reflects the proportion of actual members that are
correctly identified by the attack when only 10% of non-
members are incorrectly classified asmembers. A higher
TPR@FPR 0.1 indicates a more powerful attack with a
low tolerance for false positives.

1) PRIVACY-ACCURACY TRADE-OFF
Each of the heterogeneous FL methods is expected to provide
a different privacy-accuracy trade-off, depending on how
the client model integration is performed in the server.
We formulate below three hypotheses that we empirically
validate in our experiments.

a: FREQUENCY HYPOTHESIS (H1)
Wehypothesize that heterogeneous FLmethods where clients
have access to the same set of channels more frequently
perform better in terms of client-level accuracy but have
a worse client-level privacy. For example, in GFM the
clients access the same set of channels every four rounds.
Thus, compared to the two state-of-the-art heterogeneous
FL methods, namely HeteroFL (same set of channels per
client across rounds) and FDropout (random selection of
channels per client in each round), we expect this method
to yield a client privacy-performance trade-off between these
two existing methods.

Based on this hypothesis we expect:
• OSR, GSR, and USR (FDropout) to be the most
resilient methods against MIAs but provide the worst
client accuracy as the clients receive the parameters from
a new set of channels in every round. Therefore, the same
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set is only repeated in every
�N
Nc

�
rounds on average for

client c with client channel size Nc and server channel
size N .

• OFM (HeteroFL) and OFR to be the most vulnerable
against MIAs but achieve high client accuracies as the
clients train using the parameters of the same set of
channels in every round (1 round).

b: SIMILARITY BETWEEN THE M AND R CATEGORIES (H2)
In a CNN layer, as long as the selected input channels of layer
l match the output channels of layer l − 1, the differences
between variations M and R should be small. They differ
only in the number of channels shared by client groups.
We designed the sub-matrix category (M) to minimize the
channel overlap between groups. Thus, we expect the models
in the M and R categories to behave similarly regarding
performance and privacy.

c: THE DIFFERENCES IN THE PRIVACY-ACCURACY
TRADE-OFF BETWEEN THE METHODS DECREASE
AS THE NUMBER OF LARGE CLIENTS IN
THE FEDERATION INCREASES (H3)
The heterogeneous FL methods discussed in this paper are
relevant when the majority of the clients learn smaller models
than the server’s model. Note that in cases when all the
clients but one learn models of the same complexity as the
server’s model, the UFR and OFRmethods become the same.
Therefore, we expect the impact of the channel selection
strategies to be larger when the majority of clients in the
federation learn smaller models than the server’s model.

We perform a comparative analysis of the proposed meth-
ods and empirically validate our hypotheses in experiments
on commonly used vision datasets, as described next.

V. EXPERIMENTS
A. DATASETS
We perform experiments on two widely used image datasets:
CIFAR-10 and CIFAR-100 given that, our work lies at
the intersection of MIA techniques and heterogenous FL
and, to the best of our knowledge, these two datasets
are the only common datasets in the literature from both
communities(FL: [1], [5], [6] and MIA: [22], [28]).

CIFAR-10 [34] contains 60,000 images from 10 classes
(50,000 images for training and validation and 10,000 images
for testing).

CIFAR-100 [34] has the same number of training and
testing images as CIFAR-10 but with 100 classes and
500 training images per class.

We use a class-wise balanced, but client-wise weighted-
distribution. We generate a data distribution using the
Dirichlet distribution Dir(α) once, and apply the same split
for each class. This ensures that each client has the same
number of images from each class while they have different
dataset sizes. The dataset size imbalance is controlled by the
α ∈ (0, ∞) value: the larger the α, the closer the allocation
of training data to the uniform distribution and hence the

closer to an IID scenario. Using α = 0.85 this distribution
generates clients with dataset size typically ranging from
1, 000 to 10, 000 samples.We apply random crop and random
flip augmentations.

B. METHODOLOGY
1) MACHINE LEARNING MODEL
Given the nature of the data (images), we use a sequential
CNN architecture, with convolutional, batch normalization
and fully connected layers with trainable weights follow-
ing [5]. We control the model complexity by changing the
number of channels in the convolutional layers and the
number of units in the final fully connected layer. In our
experiments, we increase the complexity by factors of 2: each
increase in the level of model complexity entails doubling the
input and output channel sizes in each inner convolutional
layer and the number of units in the final fully connected
layer. A detailed description of the model architecture is
available in the Appendix.

TABLE 2. Correlations of the three performance attack metrics (AUC, Adv,
TPR@FPR 0.1%) on the three MIAs (Yeom, LiRA, tMIA) on the CIFAR-10
dataset. Note how AUC has the largest correlation across the three MIAs.
Hence, we use in the experiments the average AUC over the three MIAs
as the privacy performance metric.

2) EXPERIMENTAL SETUP
In all experiments we define a heterogeneous FL architecture
with 10 clients which are trained with the Adam optimizer,
a learning rate of 0.001 for one local epoch, a batch size
of 128, and 150 rounds of FL. Experiments are repeated
3 times and we report mean values and standard deviation.
The server learns a large model, which corresponds to a
CNN network with 100k parameters. The clients learn a
model with either the same complexity as the server’s model
or one complexity level below with 30k parameters (small
model). All models are built in PyTorch [35] with the Flower
federated framework [36]. FL clients are simulated in parallel
on 2 AMD EPYC 7643 48-Core CPUs with 252GB RAM.

We train the 9 heterogeneous FL methods in a FL
architecture with 10 clients, of which 2, 5, or 8 clients
learn small models and the rest learn models of the same
complexity as the server’s model. Clients with a smaller
dataset size are selected first to learn smaller models.

We also train as baselines two FedAvg baselines,
FedAvg30k and FedAvg100k, where the server and the clients
learn models with 30k and 100k parameters respectively.
Thus, we train 29 different FL models for each data
distribution.

While we do not perform experiments with heterogeneous
FL architectures that include more than two levels of model
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FIGURE 2. Client accuracy vs privacy trade-off and server-side accuracy of the 9 heterogeneous FL methods under study. Privacy attack performance
(AUC) averaged over the 3 MIAs (Yeom, LiRA, tMIA). All heterogeneous FL architectures consist of 2 clients with large models (100k parameters, same
size as the server’s model) and 8 clients with small models (30k parameters). For reference, we report the performance of FedAvg30k and FedAvg100k
with 10 small (30k parameters) and 10 large (100k parameters) clients, respectively. Heterogeneous FL methods with optimal client accuracy-privacy
trade-off would be on the top-left corner of the graph. Heterogeneous FL methods with largest server-side accuracy are depicted at the top of the bar
with gradient shading on the right-hand side of the graphs. Marker highlights repeated channel frequency.

complexity, we expect our results to extrapolate to other
configurations in a similar way as reported in [5].

3) MEMBERSHIP INFERENCE ATTACKS
Each client is subject to the 3 previously described MIAs.
For LiRA and tMIA, the auxiliary dataset is drawn from the
datasets of the rest of the clients Dc

a = {D1, . . . , DC } \ Dc.
We use the same shadow models to attack models from the
same experiment. We train 16 shadow models for LiRA and
use 25 distillation epochs for tMIA.

4) PERFORMANCE METRICS
We report three performance metrics: (1) client-side and
(2) server-side accuracies on the testsets; and (3) the average
AUC of the 3 MIAs. We select AUC because it is the
metric that exhibited the largest correlation across MIAs on
the evaluation datasets. Table 2 depicts the correlation of
the three performance metrics (AUC, attack advantage and
TPR@FPR 0.1) of the three MIAs (tMIA, LiRA, Yeom)
on the CIFAR-10 dataset for illustration.

C. RESULTS
1) PRIVACY – PERFORMANCE TRADE-OFF
Figure 2 depicts the three performance measures of study,
namely client-side accuracy (Y-axis), average attack AUC
of the 3 MIAs (X-axis) and server-side accuracy (bar with
gradient shading), of the nine heterogeneous FL methods in
a federation with 2 large clients on the CIFAR-10 (a) and
CIFAR-100 (b) datasets. The complete set of results can be
found in Tables 8 and 9 in the Appendix.

The results corroborate our first hypothesis H1 related
to the accuracy-privacy trade-off. From a client perspec-
tive, methods GFM and GFR achieve similar accuracies
as HeteroFL but with with better privacy protection
(0.5−1.0%AUC). Their overall accuracy-privacy trade-off is

similar to that of FedAvg30k yet they achieve significantly
better server-side accuracy (77.89%and 78.19%over 69.04%
for CIFAR-10 and 43.05% and 43.17% over 34.01% for
CIFAR-100). FDropout, and the GSR and OSR methods
perform well in terms of client privacy, but their client
accuracy is significantly lower when compared to the rest of
the methods.

Supporting our H2 hypothesis, methods GFR and GFM,
and methods OFR and OFM yield similar results in all three
measures on the two datasets, with OFM (HeteroFL) and
OFR on CIFAR-100 being the closest with differences of
only 0.2%, 0.6%, and 0.02% on the server accuracy, client
accuracy, and attack AUC, respectively.

Interestingly, while the OSM method performs as expected
on the client side, it outperforms every other FL method on
its server-side accuracy, providing the best server accuracy-
client privacy trade-off from all the studied methods.

2) IMPACT OF THE NUMBER OF CLIENTS WITH SMALL
MODEL COMPLEXITY
To evaluate hypothesis H3, we perform experiments with
heterogeneous federations with 10 clients of which 2, 5 or
8 clients learn models of the same model complexity as
the server’s model. Table 3 summarizes the difference in
performance between the best and the worse performing
methods in each of these federations. Note how the difference
in performance between the best and worst performing
models in a federation with 2 large clients vs a federation
with 8 large clients is 3x for the server-side accuracy and
attack AUC, and over 6x for the client-side accuracy. These
results support hypothesis H3.

3) NON-IID DATA
We study the impact of non-IID (non independent and
identically distributed) data using the Federated EMNIST
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or FEMNIST [37] dataset, which is an image dataset of
hand-written characters. We select this dataset because it
is common in both the MIA and FL literature: while the
original MNIST dataset is frequently used to evaluate MIAs,
[28] its federated version (FEMNIST) is commonly used to
evaluate FL methods [38], [39]. It consists of 62 classes
with a long-tail data distribution. In its federated version,
the images are distributed by the ID of the writer whose
handwriting they are. Following the official sub-sampling
method, we select 20% of the data, keeping only writers
with at least 300 samples and splitting into train-test datasets
where the test dataset corresponds to images by unseen.
This results in approximately 165 writers in the train set.
We distribute the data among 10 clients following the
standard practice in the literature [38]. We do not apply data
augmentation on this dataset.

TABLE 3. Absolute differences in performance between the best and
worse performing methods in federations with 2, 5, and 8 large clients.
As the ratio of clients with the same model size as the server increases,
the differences in performance between the methods decreases
corroborating our third hypothesis.

While the previously formulated hypotheses hold in the
case of non-IID data on the client-side, the server-side
accuracy significantly drops when using heterogeneous FL
methods: 2.2 points for FL with 2 large clients, and 0.9 points
for 5 large clients. Furthermore, the FedAvg100k baseline
outperforms several of the studied methods regarding client
privacy. These results shed light on the limitations of the
studied model integration methods in heterogeneous FL,
and suggest that further research is needed to develop
novel heterogeneous FL methods that consider the spurious
correlations within the clients [40]. The Appendix contains
more details about the experiments with non-IID data,
including the results of applying two popular approaches
to mitigate the challenges associated with non-IID data.
The results, summarized in Table 6, illustrate how most
methods improve both in accuracy and privacy protection
yet there is no single method that yields the best overall
performance, highlighting the importance of considering the
model integration strategy in heterogeneous FL settings.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a novel taxonomy of
heterogeneous FL methods that not only frames existing
approaches into the same family of methods, but also

enables the proposal of 7 new methods. In extensive
empirical evaluations with the CIFAR-10 and CIFAR-100
datasets, we have studied the server-side accuracy and the
client accuracy-privacy trade-off of these approaches when
subjected to three commonly used membership inference
attacks. Our results show that heterogeneous FL models can
be used to mitigate the vulnerability against such attacks.
Moreover, the strategy adopted to integrate the clients’
models into the server’s model impacts both the accuracy and
privacy of the federation. By establishing a comprehensive
taxonomy and introducing novel methodologies, we pave the
way for enhanced privacy of sensitive data within federated
learning environments. In future work, we plan to develop
more robust methods to consider non-IID data in the clients
in heterogeneous FL settings, particularly when there might
be spuriou correlations present in the datasets.

APPENDIX A
MACHINE LEARNING MODEL
The model in all our experiments is a Convolutional Neural
Network, similar to the models reported in related work [5].
The layers with weight matrices consist of 2D convolutional
layers with a (N ,M ,H ,W ) 4-dimensional matrix, where the
first two dimensions N and M correspond the output and
input channels and the rest are the convolutional kernels.
From a heterogeneous FL perspective, N and M are the
dimensions that change when the clients in the federation
learn models of different size than the server’s model whereas
H and W are the same as in the server. In the PyTorch
implementation, the bias of the convolutional layers has a
separate (N ) 1-dimensional matrix. When a subset of Nl

c
output channels is selected for a client c and convolutional
layer l, its bias shares the same Nl

c out of Nl output
channels.

After the convolutional layers in the model architec-
ture, there are BatchNorm normalization layers with (N )
1-dimensional weight matrices with bias. Note that the
BatchNorm layer l+2 after convolutional layer l has the same
Nl+2
c = Nl

c channels selected. The Scaler layer adapted from
HeteroFL [5] scales its input with respect to the model-
agnostic compression rate. For rc = Nc

N = Mc
M , the Scaler

follows:

fScaler(x) = 1
rc
x. (6)

Finally, there is a linear layer lin with weight matrix (N ,M )
and bias with weight matrix size (N ). Each client c shares the
same Nlin

c output channels in this linear layer.
The complexity of the model is controlled with parame-

ter u. Each input and output dimension of the weight matrix
is a multiple of u. The model complexity levels used in this
paper –namely 30k, 100k, 400k, and 1.6M– correspond to u
values of 8, 16, 32, and 64, respectively. Figure 3 illustrates
the model architecture for a generic u and an example with
u = 16.
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FIGURE 3. Model architecture and sizes of the weight matrices depending
on the model complexity, controlled by the parameter u. Layer names and
constant parameter dimensions on the left, varying dimensions on the
right.

APPENDIX B
MEMBERSHIP INFERENCE ATTACKS
A. YEOM ATTACK
The Yeom attack [28] is a membership inference attack that
relies on comparing the prediction loss of a model on specific
data instances to a pre-defined threshold. This threshold
distinguishes between instances that were likely part of the
training dataset and those that were not. The underlying
assumption is that data points used in training tend to have
a lower loss than those that were not, because the model has
learned to perform well on training instances.

1) ATTACK SETUP AND THRESHOLD SELECTION
The Yeom attack relies on two main components:

1) Global Threshold (ν): The attacker sets a loss
threshold ν, below which an instance is considered
likely to belong to the training dataset.

2) Attacker’s Knowledge: To calculate this threshold, the
attacker uses a subset of data instances with known
membership. This auxiliary set includes:

• DA+: Known training instances (member
data).

• DA−: Known non-training instances (non-member
data).

Using DA+, the attacker computes the threshold ν as the
average loss on known member instances:

ν = 1
|DA+|

X

(x′,y′)∈DA+

loss(y′, f (x′; θ ))

where:
• f (x′; θ ) is the model’s prediction for input x′,
• loss(y′, f (x′; θ )) is the loss for true label y′ and prediction
f (x′; θ ).

2) MEMBERSHIP INFERENCE DECISION
Once the threshold ν is established, the attacker determines
the membership status of a new instance (x, y) by comparing
its loss to ν:

AYeom(ŷ, (x, y)) =
(
1, if loss(y, ŷ) < ν

0, otherwise.

Here, ŷ = f (x; θ ) is the model’s predicted label for x, and
loss(y, ŷ) is the computed loss for this instance.

B. LiRA ATTACK
We use the offline version of the LiRA (Likelihood Ratio
Attack) attack of [29].

1) ATTACK SETUP: SHADOW MODELS AND AUXILIARY
DATASET
The attack operates in several steps:

1) Auxiliary Dataset (Da): The attacker has access to
an auxiliary dataset Da that is similar to the data
used to train the target model, although not necessarily
identical. This auxiliary data is used to simulate the
behavior of the target model with respect to training
and non-training instances.

2) Shadow Models (Msw): Using Da, the attacker trains
multiple ‘‘shadow models’’ Msw on different random
subsets Dsw ⊂ Da. Each shadow model is designed to
mimic the target model’s behavior, especially in terms
of confidence levels for data that was and was not in
the training set.

3) Confidence Scores: For each data instance (x, y), the
attacker queries each shadow model Msw to obtain
a confidence score, typically the model’s probability
prediction for the true label y.We denote the confidence
score of shadow model Msw on (x, y) as φ(Msw(x), y).

2) MODELING CONFIDENCE SCORES WITH A GAUSSIAN
DISTRIBUTION
For the data instance (x, y), the attacker gathers con-
fidence scores from all shadow models, yielding the
set {φ(M1(x), y), φ(M2(x), y), . . . ,φ(Mk (x), y)}. This set of
scores is used to model the distribution of confidence values
for instances that are either ‘‘in’’ or ‘‘out’’ of the training data.
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The attacker then fits a Gaussian distribution N (µ, σ 2)
to these confidence scores, where µ and σ 2 represent the
mean and variance of the scores. This Gaussian distribution
captures the typical confidence score behavior of shadow
models, depending on whether (x, y) was in the training data.

3) CALCULATING MEMBERSHIP PROBABILITY
Once the Gaussian distribution N (µ, σ 2) is fitted, the
attacker uses it to assess the probability that a new confidence
score φ(M (x), y) from the target modelM is characteristic of
training data.

The membership probability is calculated as:
1 − Pr

h
N (µ, σ 2) > φ(M (x), y)

i

This probability reflects the likelihood that φ(M (x), y) would
be a typical score under the Gaussian model. A higher
probability suggests that (x, y) is likely part of the training
data, whereas a lower probability indicates non-membership.

4) MEMBERSHIP INFERENCE DECISION
To make a final membership inference decision, the LiRA
attack applies a threshold ν to determine whether the
probability of membership exceeds a certain level as per the
following decision rule:

ALiRA(ŷ, (x, y), Da) =





1, if 1 − Pr[N (µ, σ 2) >

φ(ŷ, y)] < ν

0, otherwise.

(7)

such that
• The attack outputs 1 (indicating membership) if the
membership probability exceeds the threshold 1 − ν.

• Otherwise, it outputs 0 (indicating non-membership).

C. TRAJECTORY MIA ATTACK
The tMIA attack [30] determines the membership of a
data point based on the loss trajectory of the instance over
multiple training epochs. The underlying hypothesis is that
the sequence of loss values (i.e., the loss trajectory) of a
data point changes differently for training data (members)
and non-training data (non-members) as the model learns.
Therefore, tracking these loss values over epochs can reveal
membership status.

In a black-box setting such as ours, only the final
trained model is accessible, and therefore the loss trajectory
throughout training is not available. To address this, thetMIA
attack uses knowledge distillation to approximate the loss
trajectory.

1) ATTACK SETUP: TARGET AND SHADOW MODELS
The target model is denoted by M0

tg(f , Dg), where f is the
model function and Dg is the dataset used to train the model.
The attack involves two key steps:

1) Shadow Model Training: A shadow model M0
sw-

(f , D+
sw) is trained on a subset (D+

sw, D−
sw) ⊂ Da, where

D+
sw contains samples similar to the training data and

D−
sw contains non-training samples.

2) Distillation Process: The attacker distills both the
target and shadow models on a distillation dataset
Ddl ⊂ Da. During this process, snapshots of the models
are saved at each training epoch, resulting in a sequence
of models:

{M0
tg,M

1
tg, . . . ,M

d
tg} and {M0

sw,M1
sw, . . . ,Md

sw}.

2) LOSS TRAJECTORY CALCULATION
For a data instance (x, y), its loss trajectory is captured by
evaluating the loss of the data point at each epoch during the
distillation process. This yields a sequence of losses:

λ
(x,y)
∗ = {l0∗, l1∗, . . . , ld∗ }(x,y)∗

where each li∗ is the loss at epoch i for model Mi∗, and
∗ ∈ {tg, sw} represents either the target or shadow model.

3) TRAINING THE ATTACK MODEL
The attack model MA is trained to recognize patterns in the
loss trajectories that indicate membership. To train MA, the
loss trajectories of data points in the shadow model, both
from the shadow training setD+

sw (members) and shadow non-
training set D−

sw (non-members), are used. Specifically, the
training set for MA consists of:

{λ(x,y)
sw | (x, y) ∈ D+

sw ∪ D−
sw}

where each λ
(x,y)
sw is the loss trajectory of (x, y) on the shadow

model.

4) MEMBERSHIP INFERENCE DECISION
During inference, the attack modelMA predicts the member-
ship status of a new data instance (x, y) by analyzing the loss
trajectory from the target model’s distillation process, λ(x,y)

tg .
The attack decision rule is:

AtMIA(ŷ, (x, y), Da) =
(
1, if MA(λ

(x,y)
tg ) > ν

0, otherwise.
(8)

Here:
• MA(λ

(x,y)
tg ) is the output of the attack model on the loss

trajectory λ
(x,y)
tg .

• ν is a threshold value; if the attack model’s out-
put exceeds this threshold, the instance is predicted
as a member (1), otherwise, it is predicted as a
non-member (0).

APPENDIX C
INPUT-OUTPUT CHANNEL DEPENDENCY
In section III-C, we present FDropout [4] and HeteroFL
[5] according to their original descriptions, which suggest
that the channels of a layer l can be dropped independently
from the previous and following channels. However, after
extensive experiments, we observed that the client models
train significantly better if the selected output channels of a
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convolutional layer are the same as the input channels of the
following convolutional layer. In the FDropout adaptation
of [7] the same principled is adopted: layer l only drops
output channels randomly, while the selection of the input
channels is inherited from the previous convolutional layer.
The pseudo-code in [41] suggests that their implementation
follows the original layer-independent dropout and their
results show that FDropout performs badly compared to
other techniques: while the Simple Ensemble Averaging
method reached the 70% accuracy of the baseline FedAvg
on FEMNIST dataset, the presented implementation of
FDropout only reached 60%. In table 4, we compare
FDropout (USR) and GFR with input and output channels
dropped independently and with layer-wise coupling with
respect to the previous and following layer. The results
show that the client side accuracy for the laye-wise methods
outperforms their independent counterpart by 16% for
FDropout and 7% for GFR. Based on these results we
conclude that the layer-wise dependency is necessary to
achieve competitive results and follow this principle in our
other experiments.

Additionally, in this Appendix we describe how the
BatchNorm layers in our implementation have the same
channels dropped as the previous convolutional layers.

TABLE 4. Input-output channels selected independently and with respect
to the previous layers in the CNN. FDropout (USR) and GFR experiments
on CIFAR-10 with 2 large clients out of 10 clients in total, repeated
3 times. Client-side performance is significantly better when the channel
selection is structured layer-wise compared to their independent
counterparts. Privacy evaluated with the Yeom attack.

APPENDIX D
DATASET SIZE, PRIVACY, MODEL SIZE AND ACCURACY
Previous work has shown that as models get more complex,
they are more vulnerable to MIAs. For example, [28]
demonstrate that their attack’s accuracy increases as the
model size increases on standard benchmark image datasets.
In FL, Li et al. [9] reported that, the larger the models, the
more vulnerable they are to model memorization attacks.
In their case, it was a horizontal FL architecture with the
same model (ResNet) both in the server and the clients. Other
works have highlighted that over-parameterized models are
vulnerable to membership memorization attacks [42].
In this section, we shed further light on this topic by

focusing on the privacy-accuracy trade-off in FL with respect
to dataset and model size, and from the perspective of both
the server and the clients. Note that prior studies have only
analyzed the server’s performance. By means of an empirical
illustrative example, we show that, for a given model and an

FL scenario, there is a strong negative correlation between
the size of the clients’ datasets and models, and their
vulnerability against membership inference attacks (Yeom
in our example). As previously discussed, this attack occurs
on the last update the client sends to the server in round
T , AYeom(θTc ). We use the Yeom attack for this illustrative
experiment as it requires significantly less computation than
the other described MIAs.

We perform the experiments on the CIFAR-10 image
dataset (see Section V for a description of the dataset) with
10 homogenous clients and a FedAvg FL architecture [1].
In FedAvg the clients train the same model as the server
using their own dataset, such that the average of the clients’
model weights is an approximation of training the same
model in a centralized machine with access to all client data.
That is,FedAvg computesminθ L(θ ), given by: minθ L(θ ) =

min
θ

1
|D|

CX

c=1

X

(x,y)∈Dc

l(y, f (x, θ )) ≈ 1
C

CX

c=1

min
θc

Lc(θc, Dc)

(9)

where L is the loss function in the server when having access
to all the client data; l is the loss function in each client;
θ and f are server model parameters and server architecture,
respectively. The loss at each client Lc(θc, Dc) is given by
1

|Dc|
P

(x,y)∈Dc
l(y, f (x, θc)), whereC is the number of clients;

and Dc represents the dataset of client c such that D =SC
c=1 Dc corresponds to the entire dataset.
To ensure a fair evaluation, the attacker’s knowledge

datasetDA+ for the Yeom’s attack is proportionate to the size
of the training dataset. Specifically, we select 1%: |DA+| =
min(3, 0.01|Dc|) for the attack on client c with dataset size
|Dc|. The attack test dataset DMIA contains the same number
of samples from the training set as samples from outside
of the training set. If the client c has less than 5, 000 data
samples, we test on all of the client data samples with non-
member examples from the test set, so that |DMIA| = 2Dc,
otherwise it is capped at 5, 000. With such a dataset setting,
a simple baseline which guesses that eachMIA test data point
is part of the training dataset would give a 50% accuracy.
We define the attack advantage [43] as the improvement
of an attack when compared to this baseline according to:
Adv(A) = 2(Acc(A) − 50), where Acc(A) is the accuracy
of the attacker’s model.

Regarding the machine learning models, we adopt the
architecture proposed in [5]. It consists of a convolutional
neural network (CNN) with 4 convolutional layers and one
fully connected layer at the end. We adjust the model
complexity by changing the number of channels in the
convolutional layers and the number of units in the last fully
connected layer. We define 4 levels of model complexity and
train 5 models for each level of complexity using FedAvg
with class-balanced data in each client, resulting in 50 client
models. The complexity of the models is measured by the
number of parameters, ranging from models with 30k to
models with 1.6 million parameters.
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FIGURE 4. (a): Exemplary illustration of the correlation between the privacy attack advantage for the Yeom attack and the dataset size from
the clients’ perspective. Results for 5 repeated experiments on the CIFAR-10 dataset using the FedAvg architecture with 10 clients having
different dataset sizes, resulting in 50 client models.Each dot depicts a client in one federated training and the color represents different
model complexities (CNNs), characterized by the number of parameters, ranging from 30k to 1.6 million.Note the negative correlations
between the size of the clients’ dataset and the attack advantage, as well as between the model’s complexity and the associated attack
advantage. (b): Privacy-accuracy trade-off of the data depicted in (a) by averaging experiments across clients per model complexity.
In addition to CIFAR-10, we also show the trade-off for the CIFAR-100 and FEMNIST datasets. The attacker’s advantage and test accuracy on
the clients increases as the model size increases. Observations in (a) and (b) suggest that model-agnostic Federated Learning could be a
privacy-enhancing solution.

For each model complexity, we compute the Pearson
correlation coefficient between the logarithm of the clients’
dataset size, log10(|Dc|), and the attack advantage on the
clients’ final update, Adv(AYeom(θTc )). Figure 4(a) visually
illustrates the correlation between the client’s dataset size
and the attack advantage on the models of increasing
complexity on the CIFAR-10 dataset. Note that clients
with less than 400 data points are not considered in the
calculation as their attack performance is not consistent
through runs due to having very small (< 4) attacker
knowledge. Figure 4(b) depicts the privacy-accuracy trade-
off by averaging experiments across clients for each model
complexity on the CIFAR-10, CIFAR-100, and FEMNIST
datasets.We observe strong negative correlations between the
size of the clients’ dataset and the attack’s advantage; and
between the clients’ model complexity and the corresponding
attack’s advantage. We also observe that both the attacker’s
advantage and the test accuracy on the clients increase as
the model size increases. These results suggest that model-
agnostic FL could enhance privacy both in the server and the
clients by means of learning models in the clients that are
smaller than the server’s model.

APPENDIX E
DETAILED EXPERIMENTAL RESULTS
A. MODEL SIZE VS ATTACK ADVANTAGE
Table 5 shows the Pearson correlation coefficient between the
client dataset sizes and their vulnerability against client-side
Yeommembership inference attacks. Numbers correspond to
running experiments 5 times in a federation with 10 clients.
Clients with less than 400 data samples are excluded from the
analysis, resulting in the exclusion of 3 clients in the 5 runs
with the CIFAR-10 and CIFAR-100 datasets. All values in the

table exceed the critical value of non-significant correlation
for the given sample size.

TABLE 5. Pearson correlation coefficient of dataset size and attack
advantage for different model sizes in class-balanced heterogeneous
data distribution.

TABLE 6. Performance and change in performance when FedProx or
FedAvgM are applied to the Federated Learning methods. Improvements
are highlighted in bold and the best performing results are underlined.
As seen in the Table, most methods improve both in accuracy and privacy
protection yet there is no single method that yields the best performance.
The table illustrates the impact of the server model integration strategy in
heterogeneous FL settings. As observed with IID data, randomness in the
channel selection yields better privacy protection and competitive server
accuracy at the expense of client accuracy.

B. EXPERIMENTS ON NON-IID DATA
Figure 5 depicts the performance of the 9 model-agnostic
FL methods on the FEMNIST dataset for a federation
with 2 and 5 large (100k parameters) clients and the same
experimental setup as that described in the main paper.
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FIGURE 5. Performance of the 9 model-agnostic methods and baselines on the FEMNIST dataset with 2 and 5 large (100k parameters) clients. These
results suggest that more sophisticated model-agnostic approaches that take into account spurious correlations beyond channel selection strategies
are needed.

TABLE 7. Detailed results on the FEMNIST dataset. Experiments averaged over 3 runs. Best in each category highlighted with bold. Methods are grouped
by number of large clients and ordered based on the frequency a client receives the same parameters.

In the case of a federation with 2 large clients
(Figure Figure 5(a)), we observe significant differences in the
server’s performance when compared to the results obtained
with the CIFAR-10 and CIFAR-100 datasets. Contrary to
the CIFAR-x datasets, methods GFR, OSR, OFM, and
OFR underperform in terms of server-side accuracy when
compared to the FedAvg30k baseline, while methods
OFR and OFM underperform in terms of privacy compared
to theFedAvg100k baseline. These results suggest that
heterogeneous FL architectures where some of the clients
learn smaller models can lead to higher privacy risks,
highlighting the importance of analyzing the impact of

model integration in those settings, as we do in this
paper.

In a federation with 5 large clients (Figure Figure 5(b)),
the server-side results are more similar to those obtained on
the CIFAR-x datasets: method OSM yields the best server-
side accuracy and all the methods outperform FedAvg30k.
Interestingly and contrary to the behavior on the CIFAR-x
datasets, FDropout is competitive with the other methods
on its server-side accuracy, yet it yields poor client-side
accuracy.

To mitigate the observed decrease in performance and
privacy of the models in the case of non-IID data, we have
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TABLE 8. Detailed results on the CIFAR-10 dataset. Experiments averaged over 3 runs. Best in each category highlighted with bold. Methods are grouped
by number of large clients and ordered based on the frequency a client receives the same parameters.

TABLE 9. Detailed results on the CIFAR-100 dataset. Experiments averaged over 3 runs. Best in each category highlighted with bold. Methods are grouped
by number of large clients and ordered based on the frequency a client receives the same parameters.

integrated two commonly used methods to tackle non-
IIDness in federating learning, namely FedProx [44], and
FedAvgM [45]. FedProx applies a proximal term in the
client loss based on the client model’s distance from the
server model, which regularizes the client model updates,
reducing the differences between client updates and therefore
improving client privacy. FedAvgM uses momentum on the
server side. It has been shown to be a simple yet effective
method to improve performance in non-IID settings. Table 6
summarizes the performance of all the heterogeneous FL
approaches with non-IID data after applying FedProx
and FedAvgM. As seen in the Table, there is an increase
in the server and client accuracy and an improvement in

client privacy for most of the heterogeneous FL methods.
In addition, other approaches that have been proposed in the
literature tomitigate the challenges of non-IID data could also
be used, including contrasive loss [46], [47], distillation [48],
and representation learing [49]. We leave to future work a
more in-depth exploration of such methods as it is out of the
main scope of this paper.

In future work we also plan to further study the behavior of
model-agnostic FL methods on non-IID data. We speculate
that these differences in behavior might be due to spurious
correlations, which are inexistent in the CIFAR-x dasets yet
present in the FEMNIST dataset, as the writer’s style might
be correlated to certain classes and clients [40].
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C. ATTACKS ON CIFAR-10 AND CIFAR-100 DATASETS
Results on the two CIFAR datasets are summarized in the
main paper in included in detail in Table 8 and Table 9.
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