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Abstract. Hyphenation algorithms are the computer based ways of syl-
labification and mostly used in typesetting, formatting documents as well
as text-to-speech and speech recognition systems. We present a deep
learning approach to automatic hyphenation of Hungarian text. Our
experiments compare feed forward, recurrenct and convolutional neural
network approaches.
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1 Introduction

Hungarian children learn the rules of syllabification in their early teens. Hyphen-
ation rules are clearly defined in [1], and after years of practice most people use
it naturally and this is seen as part of the common knowledge.

In Hungarian hyphenation depends mostly on the word itself and less so on
context. Polysemous words may have different hyphenations in different senses
which can only be derived from the context as shown in the example me-gint
(again) and meg-int (warn). Although it is a known issue, most hyphenation al-
gorithms hyphenate words with no regard to context and assign only one possible
hyphenation for a word.

Commonly used hyphenation algorithms are based on the methods defined
in the first version of TEX [2]. It is a pattern based hyphenation algorithm with
thousands of manually chosen patterns. It’s employed in the online syllabification
system! created and maintained by RIL HASZ. [3] describes the collection of
patterns used in this system.

While we have enormous amount of words in corpora, we lack a gold standard
corpus of pre-hyphenated words. One way to create hyphenated words is to use
already available hyphenation algorithms.

2 Related Work

The world of open-source software de facto uses the TEX’s hyphenation algo-
rithm. The TEXcurrently uses the Hunspell’s hyphenation algorithm which based
on Liang’s pattern matching algorithm.

! http://helyesiras.mta.hu/helyesiras/default /hyph
? Research Institute for Linguistics of the Hungarian Academy of Sciences
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2.1 Liang’s algorithm

The basic concepts of Liang’s algorithm are the hyphenation patterns. The pro-
cess of hyphenating is the following: the algorithm finds all the matching pat-
terns. These patterns have numbers in them (skipped while matching). The odd
numbers predict hyphens. The method chooses the maximum of the numbers
between each letters (zero if not given).

The word hyphenation’s patterns are the following: hy3ph, he2n, hena4,
hen5at, 1lna, n2at, ltio, 2io [4, page 37|. Placing the patterns in the
right position and inserting the numbers in the patterns between the letters we
got Figure 1.7

.hyphenation.
h y3p h
h e2n
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h e nba t
1In a
n2a t
1t 1 o
21 o
.0h0y3p0h0e2n5a4t2i000n0.
hy-phen-ation

Fig.1: The hyphenation of ’hyphenation’ by Liang’s algorithm

2.2 Hunspell

Hunspell’s hyphenation algorithm is currently used in TEX and OpenOffice.
It is based on Liang’s work with Sojka’s non-standard hyphenation extensions
[6] and was published by Németh in 2006 [5]. Hunspell supports non-standard
hyphenation patterns such as the hyphenation of the German word Zucker —
Zuck-ker (the exact pattern is clk/k=k.

Different languages use different non-standard patterns whose sizes and types
vary significantly.

2.3 Errors in the Hunspell’s hyphenation

Most of the hyphenation errors come from the fact that the Hunspell’s creators
wanted to create a typesetting algorithm so they decided to not hyphenate one
letter long syllables the begining and the ending of the words. However, when
it comes to compound words, these one-letter parts can be in the middle of the
word. There are some examples of hyphenation errors in Table 1.

3 The visualization method comes from Németh’s article [5].
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Hyphenation by Hunspell: Correct hyphenation: Error type:
au-to-val a-u-to-val one-letter
szem-iiveg-gel szem-ii-veg-gel one-letter
has-izom has-i-zom one-letter
messze mesz-sze no hyphen
foliil f51-iil no hyphen
top-ikok to-pi-kok no hyphen*
vi-deo vi-de-6 one-letter
geo-dé-zia ge-o-dé-zi-a no hyphen
diszk-ri-mi-na-tiv disz-kri-mi-na-tiv wrong place

Table 1. Hyphenation errors in Hunspell

2.4 Neural networks for hyphenation

[7] is the only paper we found specifically on automatic hyphenation using neural
networks. Due to technical constraints they only tested on a very small training
dataset. Our first approach (feedforward neural net) is very similar to the one
they present.

3 Neural networks

The following summary of neural networks is based on the Deep learning in
neural networks: An overview by Schmidhuber [8].

3.1 Feedforward neural network

A feedforward neural network approximates any given function f asy = f(z,7T)
where T represents those parameters with which the model can learn to achieve
the best approximation. These networks are called feedforward because the in-
formation flows through the function from x to inner (hidden) parts and finally
to y. There are no directed cycles or loops in the network.

The simplest model is a single-layer perceptron which has a weight W and
bias b, so for an input x can compute the y = Wx+b function where the learning
method optimizes the weight W and the bias b. Later on researchers showed that
adding a non-linear activation function to it can fasten the learning method and
makes it usable in non-linear functions [9]. So from the y = Wx + b the function
changed to z = Wx + b and the prediction became 3 = g(z).

The deep neural network’s name comes from that instead of a single-layer
perceptron the output of the above equation ¢(z) now called as hy is used as
the input of the next layer and so for many-many layers. So for the first layer it
became z; = Wiz + by and hy; = g1(z1) and to the second layer: zo = Wahy + bo
and hy = g2(22) and so on, until the last, nth layer where the a,, became the
prediction h,, = g. Figure 2. summarizes idea of feedforward networks.

* This word is hyphenated incorrectly by the online hyphenation tool of the Research
Institute for Linguistics.
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Fig. 2: Basics of Feedforward Neural Networks (F(F)NN)

A single iteration of training consists of a forward step where the model
predicts ¢, the evaluation step where the model compare the ¢ and y with some
type of gradient descent [10] and lastly a backpropagation step where the model
updates the weights [11].

3.2 Convolutional neural network

Convolutional neural networks were introduced to solve image recognition prob-
lems [12]. A convolutional neural network has a filter (or kernel) which is sliding
around the input (image) and multiplying the values in the filter (the weights
of the filter) with the original input values (pixels). Summing up these values
the network get a single number for every position of the filter. This will be the
output of the layer. The size of the output depends on the filter size and the
parameter strides which defines the steps of the filter’s sliding.

Let a;; be the cell (pixel) of the input (image) in the ith row and jth col-
umn and f;; the cell of the filter, while h;; the output. Thus the first cell of
convolutional layer’s output is

hll — Z amyfmy,

r=1..k,y=1..1

(where k and [ are the height and width of the filter respectively), and assuming
that the stride is 1, the h;; is:

hij = > Ay f(a—it1),(y—j+1)-
x=i..(i+k),y=7..(+1)

Figure 3. illustrates a convolutional network with a (3,3) kernel.
Kim, Jernite, Sontag and Rush showed a way of using 1 dimensional convo-
lutional neural networks and LSTM networks in character sequences [13], where
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all a'12 alS a14 a’ln h h
a,la,la,l|a a 1) 12
21 22 23 24 " 2n
a3l a32 a33 a34 a3n
a a : a a a 11 12 f13
ml) “m2| “m3| "m4 mn f f
21 22 23

31 32 33

Fig. 3: Basics of Convolutional Neural Network (CNN)

the filter size says that how many character should be included into the convo-
lution.

3.3 Recurrent neural network - LSTM

A recurrent neural network (RNN) is suited for modelling sequential phenomena.
At each time step ¢, an RNN takes the input vector z; € R™ and the hidden
state vector h;—; € R and produces the next hidden state h; by applying the
following recursive operation: hy = f(Wazy + Uhyz1 + b). In theory, an RNN can
store all information in h;, however learning long-range dependences with it is
difficult due to vanishing/exploding gradients [14].

Long short-term memory (LSTM) [15| addresses the problem of learning long
range dependencies by augmenting the RNN with a memory cell vector ¢; € R"
at each time step. Concretely, one step of an LSTM takes as input x; , hs21, ¢i71
and produces h; , ¢; via the following intermediate calculations:

iy = o(W'azy + Ulhy—q + b;)
fr=oW/az, + U hy_1 +by)

or = o(W°xy +U°hy—1 + b,)

gt = tanh(W9zy + U%hy_1 + by)
ct=ft©ci—1+i g

hy = o4 ® tanh(c;)

Here o(-) and tanh(-) are the element-wise sigmoid and hyperbolic tangent
functions, © is the element-wise multiplication operator, and i;, f;, o; are referred
to as input, forget, and output gates. At t = 1, hg and ¢ are initialized to zero
vectors. Parameters of the LSTM are W/ , U7, b for j € i, f,0,g. See the
visualisation of an LSTM unit in Figure 4.°

Bidirectional recurrent neural networks are based on the principle to split
the neurons of a regular RNN into two directions, one for positive time direc-
tion (forward states), and another for negative time direction (backward states)
[16]. In terms of characters in a word it means that the letters can affect their
surroundings on both sides.

® Visualisation and more:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Fig. 4: Basics of Long short-term memory (LSTM)

4 Data and preprocessing

Hungarian Webcorpus is one of the largest Hungarian language corpora with
over 600 million words and it is available in its entirety under a permissive Open
Content license [17,18]. We used the 100000 most frequent words from the corpus.

4.1 Data preprocessing
The preparation methods used before the training:

Cleaning Numbers, punctuation characters are cleaned, setting all letters to
lower-case.

Filtering non-standard hyphenation Because the models use character clas-
sification, they cannot handle letter addition or changing. The preprocessing
method filters them however the models may find the position of the hy-
phenation.

Filtering special characters The models only accept the Hungarian alphabet
and the padding characters.

Long word cut The CNN and LSTM networks wait for given length words so
the longer words are dropped and the shorter ones are filled with padding
characters.

Table 2. illustrates the preprocessing steps and the amount of dropped words.

Origin Cleaning Non-standard Special chars Long words Final

Words 100000 16322 1115 646 7 81910
% of the origin 100 16.32 1.11 0.65 0.01 81.91
% of the previous - 16.32 1.33 0.78 0.01
Words after - 83678 82563 81917 81910

Table 2. Data preprocessing
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5 Experimental setup

We implemented and tested three neural network architectures described in the
previous Section.

5.1 Character classification

Automatic hyphenation can be defined as a sequence labeling problem. We assign
a binary label for each character:

— B: In the beginning of the syllables.
— M: Every other letter.

The word leopdrd (leopard) hyphenated as 1e—o-péard and tagged as BMBBMMM.
There are more fine-grained labeling scemes such as the BMES, which denotes

the middle of segments as well as single-character segments, they require a more

complicated inference scheme so we decided to use the binary labeling system.

5.2 Feedforward neural network

In the feedforward neural network we want to decide to which class a specific
character belongs. To do it we use the character and its surroundings coded in
one-hot as the input layer of a fully connected network. The output is the class.

The network is summarized in Figure 5. The steps of the character classifi-
cation.

i -

- i EEE

oL HEE B
O == M
© = HE B
® Y
® ™
(R)
D
$

$

Fig. 5: Feedforward neural network
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Learning from the surroundings (Windowing) In an n-length window we
use (n — 1)/2 characters before the given one, itself and (n — 1)/2 characters
after. For example, if the character is the letter [ in the word leopdrd, and the
window-length is 5, the window will be ~ “LEO.

One-hot encoding We used one-hot encoding to represent characters as vec-
tors. We define a 37 length array for each letter in the word: each element of the
array means one letter of the Hungarian characters (35 letters) or the beginning
or ending characters. One-hot means that there is only one 1 in the array, the
others are 0. For the letter a it is the first one and the character o it is the 18th.

Thus if there are 5 characters in a window, a (5, 37) shaped two-dimensional
array is given.

Flattening The final step before the training is flattening. From the two-
dimensional array we create a reshaped one-dimensional. This means simply
putting the characters after each other. So if we had the (5,37) array, now we
have the 5 - 37 = 185 long 0,1 sequence with only 5 ones in it. And this is the
training data.

In summary, from the leopd window we got a 185 long 0,1 as the training
input and [1,0] as the training output.

The neural network The neural network is a fully connected feedforward neu-
ral network. In the hyperparameter optimization along the window length, the
number of hidden layers and the units in each hidden layer had been optimized.
The last layer has a softmax activation to approximate the values as probabilities
of B and M tags.

The training process used sigmoid activation functions and adam optimizer
[19].

5.3 Convolutional neural network

For the CNN and LSTM networks the data preparation steps are the same.
First, using the Hunspell hyphenation to define the labels, then filling the words
to a fixed size with padding (the filling label is M) and finally using the one-hot
encoding method (Figure 6.).

Unique words'—b{ Define Iabels]—h[ Fill to fixed size ]—»[ One-hot H Shuffle and split

Fig.6: CNN and LSTM data preparation
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The model has two parts. The first one is the convolutional network and
the second is a feedforward network. The convolutional layers have a stride one
so it convolves all the characters. The kernel size (it is the same dimension as
the window-length in the FFNN model), filter and hidden layer numbers were
optimized. The Keras’ built-in padding was used to prevent problems at the
endings of the word. The model currently uses ReLU activation functions.

The feedforward part is a softmax layer for every character to get back the
BM one-hot probabilities.

Figure 7. summarizes the CNN model.

| RN
e | [sbEsllokllel I S ™
o _O‘L‘.Io 1|0}... olloc)J i:D 3 =
| [SELRlRLRel A §
R I:] x

D ; [™]
£ IS ®
5] lmITNNS

Fig.7: CNN model summary

5.4 Long short-term memory

The LSTM network uses the same inputs as the CNN. The model uses BiLSTM
and optimized by the unit and hidden layer numbers. At the output of the
LSTM a softmax feedforward layer was inserted just as in the CNN one. The
model summary of the LSTM network is in Figure 8.

5.5 Hyperparameter optimization

Hyperparameters were optimized via random search. Parameter values were uni-
formly sampled from the ranged listed in Table 3..

5.6 Results and error analysis

The best results are listed in Table 4., where the precision, recall and F-score
values are for the B tagging while the word accuracy is the rate of successfully
hyphenated words.
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Fig.8: Long Short-Term Memory network

Window /Kernel Hidden layers Hidden units
FFNN 3-11 3-7 60-180 (step 10)
CNN 5-16 1-3 64-2048 (exponential scale)
LSTM - 1-3 8-256 (exponential scale)

Table 3. Hyperparameter ranges

Model Kernel Layers Hidden Epochs Trainable Precision Recall F-score Word

parameters accuracy
FFNN 7 3 150 103 84,602 98.17% 99.11% 98.64% 93.57%
CNN 8 2 1024 12 8,695,810 98.37% 99.27% 98.81% 94.45%
LSTM - 2 128 66 216,834 97.68% 99.16% 98.42% 93.13%

Table 4. The three model that performed the best.



156 XIV. Magyar Szamitogépes Nyelvészeti Konferencia

All the errors of the three models were collected and 200 words were manually
classified into the error categories. Figure 9. shows the category distribution of
the errors for each model and among the errors. As we can see, over half of
the errors are caused by using a Hungarian hyphenation algorithm on a non-
Hungarian word.

m FFNN m CNN = LSTM = All error in the category

120
100
80
&0
40

20

il amal

Non-hungarian Compound word Non-hyphenated Wrong target Not a word Others
word part

Fig.9: Category distribution in the 200 wrong words

We manually checked and grouped the both correctly and incorrectly hy-
phenated words into the following categories:

Non-hungarian word is which was recognized as a word but not Hungarian.
Compound word
Non-hyphenated part has a hyphen missing because of Hunspell’s typeset-

ting goals.
Wrong target Hunspell misses the hyphenation.
Not a words are mostly mistyped Hungarian words like elol.
Other words not filling the above categories.

Table 5. shows category distribution among all the words (correctly predicted
words as well as incorrect ones). Note that one word can be in multiple categories.
6 Conclusion

In this paper we introduced a series of experiments on Hungarian hyphenation
using deep neural networks. We compared three architecutres with varying hy-



Szeged, 2018. januar 18-19. 157

Category Distribution Example (Hunspell’s hyphenation)
Non-Hungarian word 11 obsta-c-les
Compound word 21 ak-cio-film
Non-hyphenated part 8 ak-cio-film
Wrong target 1 diszk-ri-mi-na-tiv
Not word 4 el-er-ni
Others 59

Table 5. Word categories among 100 randomly chosen words

perparameters: feedforward, recurrent and convolutional neural networks. We
trained and tested on the 100000 most frequent words from the Hungarian Web-
corpus. All models achieve over 95% word accuracy, occasionally correcting the
errors made by Hunspell. Our error analysis suggests that foreign and compound
words are the most challenging for our systems. Our source code and the best
models are available on GitHub.®
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